Telegram Web Link
📃 A Comprehensive Guide to Validating Bioinformatics Findings: From In Silico to In Vitro


📎 Study the paper


@Machine_learn
LHM: Large Animatable Human Reconstruction Model from a Single Image in Seconds



Animatable 3D human reconstruction from a single image is a challenging problem due to the ambiguity in decoupling geometry, appearance, and deformation. Recent advances in 3D human reconstruction mainly focus on static human modeling, and the reliance of using synthetic 3D scans for training limits their generalization ability. Conversely, optimization-based video methods achieve higher fidelity but demand controlled capture conditions and computationally intensive refinement processes. Motivated by the emergence of large reconstruction models for efficient static reconstruction, we propose LHM (Large Animatable Human Reconstruction Model) to infer high-fidelity avatars represented as 3D Gaussian splatting in a feed-forward pass. Our model leverages a multimodal transformer architecture to effectively encode the human body positional features and image features with attention mechanism, enabling detailed preservation of clothing geometry and texture. To further boost the face identity preservation and fine detail recovery, we propose a head feature pyramid encoding scheme to aggregate multi-scale features of the head regions. Extensive experiments demonstrate that our LHM generates plausible animatable human in seconds without post-processing for face and hands, outperforming existing methods in both reconstruction accuracy and generalization ability.

Paper: https://arxiv.org/pdf/2503.10625v1.pdf

Code: https://github.com/aigc3d/LHM

@Machine_learn
Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models

🖥 Github: https://github.com/devoallen/awesome-reasoning-economy-papers

📕 Paper: https://arxiv.org/abs/2503.24377v1

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Github LLMs
Please open Telegram to view this post
VIEW IN TELEGRAM
📖 Applied Bioinformatics
💥Free Online Book from Oregon State

🌐 Study


@Machine_learn
📄Multimodal deep learning approaches for precision oncology: a comprehensive review


📎 Study the paper


@Machine_learn
با عرض سلام
در ادامه ی کار تحقیقاتی یک مقاله مروری در حوزه پاتولوژی رو می خواهیم بنویسیم. دوستانی که مایل هستن نفرات ۲ و ٣ این موضوع رو می تونن شرکت کنن.

زمان شروع ۲۰ فروردین.

Journal: scientific reports https://www.nature.com/srep/

🔥🔥🔥🔥
Price:
2: ٢٥ میلیون
3: ٢٠ ميليون

توضیحات کامل و نحوه نگارش هر بخش رو خودم کمک میکنم.

@Raminmousa
@Machine_learn
@Paper4money
Please open Telegram to view this post
VIEW IN TELEGRAM
Llama 3.2 From Scratch

This repository contains a from-scratch, educational PyTorch implementation of Llama 3.2 text models with minimal code dependencies. The implementation is optimized for readability and intended for learning and research purposes.

📌 Guide


@Machine_learn
Carnegie Mellon University's "Advanced Algorithms" course notes

📄 Book


@Machine_learn
✔️ "Speech and Language Processing":


🟡Link

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
📃 Advances and Mechanisms of RNA–Ligand Interaction Predictions


📎 Study the paper

@Machine_learn
eswa127077.pdf
1.9 MB
Multi-modal wound classification using wound image and location by Swin Transformer and Transformer

New paper

کار مشترکی که با دوستان تونستیم چاپش رو بگیریم.

Journal: Expert system with application

If: 7.5
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
شنبه شروع اين پروژه مي باشد.
دوستاني كه مايل هستند نفر دوم از اين مقاله باقي موند است.
@Raminmousa
Large Language Model Agent: A Survey on Methodology, Applications and Challenges


Paper: https://arxiv.org/pdf/2503.21460v1.pdf

Code: https://github.com/luo-junyu/awesome-agent-papers

@Machine_learn
Artificial Intelligence Index Report 2025

📚 Report


@Machine_learn
2025/07/03 21:00:49
Back to Top
HTML Embed Code: