📃 A Comprehensive Guide to Validating Bioinformatics Findings: From In Silico to In Vitro
📎 Study the paper
@Machine_learn
📎 Study the paper
@Machine_learn
LHM: Large Animatable Human Reconstruction Model from a Single Image in Seconds
Animatable 3D human reconstruction from a single image is a challenging problem due to the ambiguity in decoupling geometry, appearance, and deformation. Recent advances in 3D human reconstruction mainly focus on static human modeling, and the reliance of using synthetic 3D scans for training limits their generalization ability. Conversely, optimization-based video methods achieve higher fidelity but demand controlled capture conditions and computationally intensive refinement processes. Motivated by the emergence of large reconstruction models for efficient static reconstruction, we propose LHM (Large Animatable Human Reconstruction Model) to infer high-fidelity avatars represented as 3D Gaussian splatting in a feed-forward pass. Our model leverages a multimodal transformer architecture to effectively encode the human body positional features and image features with attention mechanism, enabling detailed preservation of clothing geometry and texture. To further boost the face identity preservation and fine detail recovery, we propose a head feature pyramid encoding scheme to aggregate multi-scale features of the head regions. Extensive experiments demonstrate that our LHM generates plausible animatable human in seconds without post-processing for face and hands, outperforming existing methods in both reconstruction accuracy and generalization ability.
Paper: https://arxiv.org/pdf/2503.10625v1.pdf
Code: https://github.com/aigc3d/LHM
@Machine_learn
Animatable 3D human reconstruction from a single image is a challenging problem due to the ambiguity in decoupling geometry, appearance, and deformation. Recent advances in 3D human reconstruction mainly focus on static human modeling, and the reliance of using synthetic 3D scans for training limits their generalization ability. Conversely, optimization-based video methods achieve higher fidelity but demand controlled capture conditions and computationally intensive refinement processes. Motivated by the emergence of large reconstruction models for efficient static reconstruction, we propose LHM (Large Animatable Human Reconstruction Model) to infer high-fidelity avatars represented as 3D Gaussian splatting in a feed-forward pass. Our model leverages a multimodal transformer architecture to effectively encode the human body positional features and image features with attention mechanism, enabling detailed preservation of clothing geometry and texture. To further boost the face identity preservation and fine detail recovery, we propose a head feature pyramid encoding scheme to aggregate multi-scale features of the head regions. Extensive experiments demonstrate that our LHM generates plausible animatable human in seconds without post-processing for face and hands, outperforming existing methods in both reconstruction accuracy and generalization ability.
Paper: https://arxiv.org/pdf/2503.10625v1.pdf
Code: https://github.com/aigc3d/LHM
@Machine_learn
Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
🖥 Github: https://github.com/devoallen/awesome-reasoning-economy-papers
📕 Paper: https://arxiv.org/abs/2503.24377v1
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Github LLMs
Please open Telegram to view this post
VIEW IN TELEGRAM
📄Multimodal deep learning approaches for precision oncology: a comprehensive review
📎 Study the paper
@Machine_learn
📎 Study the paper
@Machine_learn
با عرض سلام
در ادامه ی کار تحقیقاتی یک مقاله مروری در حوزه پاتولوژی رو می خواهیم بنویسیم. دوستانی که مایل هستن نفرات ۲ و ٣ این موضوع رو می تونن شرکت کنن.
✅ زمان شروع ۲۰ فروردین.
Journal: scientific reports https://www.nature.com/srep/
🔥 🔥 🔥 🔥
Price:
2: ٢٥ میلیون
3: ٢٠ ميليون
توضیحات کامل و نحوه نگارش هر بخش رو خودم کمک میکنم.
@Raminmousa
@Machine_learn
@Paper4money
در ادامه ی کار تحقیقاتی یک مقاله مروری در حوزه پاتولوژی رو می خواهیم بنویسیم. دوستانی که مایل هستن نفرات ۲ و ٣ این موضوع رو می تونن شرکت کنن.
Journal: scientific reports https://www.nature.com/srep/
Price:
2: ٢٥ میلیون
3: ٢٠ ميليون
توضیحات کامل و نحوه نگارش هر بخش رو خودم کمک میکنم.
@Raminmousa
@Machine_learn
@Paper4money
Please open Telegram to view this post
VIEW IN TELEGRAM
Nature
Scientific Reports
Scientific Reports publishes original research in all areas of the natural and clinical sciences. We believe that if your research is scientifically valid and ...
Machine learning books and papers
با عرض سلام در ادامه ی کار تحقیقاتی یک مقاله مروری در حوزه پاتولوژی رو می خواهیم بنویسیم. دوستانی که مایل هستن نفرات ۲ و ٣ این موضوع رو می تونن شرکت کنن. ✅ زمان شروع ۲۰ فروردین. Journal: scientific reports https://www.nature.com/srep/ 🔥 🔥 🔥 🔥 Price: 2:…
با عرض سلام فقط نفر ۲ از این پروژه باقی مانده است....!
@Raminmousa
@Raminmousa
Llama 3.2 From Scratch
This repository contains a from-scratch, educational PyTorch implementation of Llama 3.2 text models with minimal code dependencies. The implementation is optimized for readability and intended for learning and research purposes.
📌 Guide
@Machine_learn
This repository contains a from-scratch, educational PyTorch implementation of Llama 3.2 text models with minimal code dependencies. The implementation is optimized for readability and intended for learning and research purposes.
📌 Guide
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
eswa127077.pdf
1.9 MB
Multi-modal wound classification using wound image and location by Swin Transformer and Transformer
New paper✅
کار مشترکی که با دوستان تونستیم چاپش رو بگیریم.
Journal: Expert system with application
If: 7.5
@Machine_learn
New paper
کار مشترکی که با دوستان تونستیم چاپش رو بگیریم.
Journal: Expert system with application
If: 7.5
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
Paper: https://arxiv.org/pdf/2503.21460v1.pdf
Code: https://github.com/luo-junyu/awesome-agent-papers
@Machine_learn
Paper: https://arxiv.org/pdf/2503.21460v1.pdf
Code: https://github.com/luo-junyu/awesome-agent-papers
@Machine_learn