Telegram Web Link
Please open Telegram to view this post
VIEW IN TELEGRAM
Graph Theory and Additive Combinatorics
Exploring Structure and Randomness

📚 link


@Machine_learn
🔥 Transformers Laid Out

📌 Guide


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Bias-Variance Trade-Off in Statistics at MIT OpenCourseWare

📚 Book



@Machine_learn
Greetings.
As part of our research, we want to write a review article in the field of pathology. Friends who are interested in the 2nd and 3rd places on this topic can participate.

Approximate start time: April 10th.

Journal: scientific reports https://www.nature.com/srep/

Price:
2: $400
3: $300

I will help with complete explanations and how to write each section.

@Raminmousa
@Machine_learn
@Paper4money
FastCuRL: Curriculum Reinforcement Learning with Progressive Context Extension for Efficient Training R1-like Reasoning Models

🖥 Github: https://github.com/nick7nlp/FastCuRL

📕 Paper: https://arxiv.org/abs/2503.17287v1

🌟 Tasks
: https://paperswithcode.com/task/language-modeling

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Magic of open source is taking over the Video LoRA space

just dropped👇🔥
🍬LTX video community LoRA trainer with I2V support
🍬LTX video Cakify LoRA
🍬LTX video Squish LoRA
(🧨diffusers & comfy workflow)


trainer: https://github.com/Lightricks/LTX-Video-Trainer
LoRA: https://huggingface.co/Lightricks/LTX-Video-Cakeify-LoRA
LoRA2 : https://huggingface.co/Lightricks/LTX-Video-Squish-LoRA
🔥
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Solar_Power_Generation_Forecasting_in_Europe_A_Time_Series_Analysis.pdf
4.7 MB
Solar Power Generation Forecasting in Europe: A Time Series Analysis Python Code

@Machine_learn
📃 A Survey of Deep Learning Methods in Protein Bioinformatics and its Impact on Protein Design

📎 Study the paper


@Machine_learn
📚 Introduction to Linux for Bioinformatics
💥Booklet



🌐 Study


@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
عيدكم مُبارك و كُلَّ عامٍ و انتم بالفِ ألفِ خير يارب
اسأل الله أن يعيد عليكم رمضان أعوامًا و أعوام و أن يتقبل مِنا و منكم صالِح الاعمال .🖤
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ LLM4Decompile

git clone https://github.com/albertan017/LLM4Decompile.git
cd LLM4Decompile
conda create -n 'llm4decompile' python=3.9 -y
conda activate llm4decompile
pip install -r requirements.txt


🟡 Github
🟡 Models
🟡 Paper
🟡 Colab


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Mathematics for Computer Science



📚 link

@Machine_learn
Seg-Zero: Reasoning-Chain Guided Segmentation via Cognitive Reinforcement

🖥 Github: https://github.com/yunncheng/MMRL

📕 Paper: https://arxiv.org/abs/2503.08497v1

🌟 Dataset: https://paperswithcode.com/dataset/imagenet-s

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
با عرض سلام
در ادامه ی کار تحقیقاتی یک مقاله مروری در حوزه پاتولوژی رو می خواهیم بنویسیم. دوستانی که مایل هستن نفرات ۲ و ٣ این موضوع رو می تونن شرکت کنن.

زمان شروع ۲۰ فروردین.

Journal: scientific reports https://www.nature.com/srep/

🔥🔥🔥🔥
Price:
2: ٢٥ میلیون
3: ٢٠ ميليون

توضیحات کامل و نحوه نگارش هر بخش رو خودم کمک میکنم.

@Raminmousa
@Machine_learn
@Paper4money
Please open Telegram to view this post
VIEW IN TELEGRAM
InfiniteYou: Flexible Photo Recrafting While Preserving Your Identity

20 Mar 2025 · Liming Jiang, Qing Yan, Yumin Jia, Zichuan Liu, Hao Kang, Xin Lu ·

Achieving flexible and high-fidelity identity-preserved image generation remains formidable, particularly with advanced Diffusion Transformers (DiTs) like FLUX. We introduce InfiniteYou (InfU), one of the earliest robust frameworks leveraging DiTs for this task. InfU addresses significant issues of existing methods, such as insufficient identity similarity, poor text-image alignment, and low generation quality and aesthetics. Central to InfU is InfuseNet, a component that injects identity features into the DiT base model via residual connections, enhancing identity similarity while maintaining generation capabilities. A multi-stage training strategy, including pretraining and supervised fine-tuning (SFT) with synthetic single-person-multiple-sample (SPMS) data, further improves text-image alignment, ameliorates image quality, and alleviates face copy-pasting. Extensive experiments demonstrate that InfU achieves state-of-the-art performance, surpassing existing baselines. In addition, the plug-and-play design of InfU ensures compatibility with various existing methods, offering a valuable contribution to the broader community.

Paper: https://arxiv.org/pdf/2503.16418v1.pdf

Code: https://github.com/bytedance/infiniteyou

Dataset: 10,000 People - Human Pose Recognition Data

@Machine_learn
2025/07/04 03:24:35
Back to Top
HTML Embed Code: