Telegram Web Link
فقط جايگاه ٣ باقي مونده...!
Super beginner-friendly book on Linear Algebra

🔗 Book

@Machine_learn
⭐️ Region-Aware Text-to-Image Generation via Hard Binding and Soft Refinement

RAG-Diffusion now supports FLUX.1 Redux!

🔥 Ready to take control? Customize your region-based images with our training-free solution and achieve powerful, precise results!

🔗 Code: https://github.com/NJU-PCALab/RAG-Diffusion

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
با عرض سلام نفر سوم براي مقاله زير رو خالي داريم.

Title: Alzheimer’s disease (AD) classification
using swin transformer wavelet
and Improved Gray Wolf
Optimization (IGWO)

Abstract: Alzheimer’s disease (AD) is a slow neurological disorder that destroys the thought process, and consciousness, of a human. It directly affects the development of mental ability and neurocognitive functionality. The number of patients with Alzheimer’s disease is increasing day by day, especially in old aged people, who are above 60 years of age, and, gradually, it becomes cause of their death. In this research, our goal is to present ALzSwinTNet for Alzheimer’s classification based on FMRI images. The proposed approach uses wavelet fusion in the swin transformer network to extract features. The igwo and fox optimization approaches were used to find the hyperparameters of the model. ALzSwinTNet was able to achieve an accuracy of 0.98 in 4-class classification and 1 in 2-class classification.

journal: https://www.sciencedirect.com/journal/expert-systems-with-applications

if:7.5

هزینه مشارکت برای نفر سوم ۲۰ تومن می باشد. این هزینه صرف تسویه سرورها خواهد شد.

@Raminmousa
@Machine_learn
https://www.tg-me.com/+SP9l58Ta_zZmYmY0
Machine learning books and papers pinned «با عرض سلام نفر سوم براي مقاله زير رو خالي داريم. Title: Alzheimer’s disease (AD) classification using swin transformer wavelet and Improved Gray Wolf Optimization (IGWO) Abstract: Alzheimer’s disease (AD) is a slow neurological disorder that destroys the…»
Python for Everyone

🖥 book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Github LLMs
Welcome to Ollama's Prompt Engineering Interactive Tutorial

🔗 Github

https://www.tg-me.com/deep_learning_proj
Computational Geometry

📕 Book


@Machine_learn
⚡️ MobileLLM


🟢MobileLLM-125M. 30 Layers, 9 Attention Heads, 3 KV Heads. 576 Token Dimension;

🟢MobileLLM-350M. 32 Layers, 15 Attention Heads, 5 KV Heads. 960 Token Dimension;

🟢MobileLLM-600M. 40 Layers, 18 Attention Heads, 6 KV Heads. 1152 Token Dimension;

🟢MobileLLM-1B. 54 Layers, 20 Attention Heads, 5 KV Heads. 1280 Token Dimension;


🟡Arxiv
🖥GitHub


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
OrientedFormer: An End-to-End Transformer-Based Oriented Object Detector in Remote Sensing Images


Publication date:
IEEE Transactions on Geoscience and Remote Sensing 2024

Topic: Object detection

Paper
: https://arxiv.org/pdf/2409.19648v1.pdf

GitHub: https://github.com/wokaikaixinxin/OrientedFormer

Description:

In this paper, we propose an end-to-end transformer-based oriented object detector, consisting of three dedicated modules to address these issues. First, Gaussian positional encoding is proposed to encode the angle, position, and size of oriented boxes using Gaussian distributions. Second, Wasserstein self-attention is proposed to introduce geometric relations and facilitate interaction between content and positional queries by utilizing Gaussian Wasserstein distance scores. Third, oriented cross-attention is proposed to align values and positional queries by rotating sampling points around the positional query according to their angles.

@Machine_learn
🌟 INTELLECT-1: Release of the first decentralized learning model.

PRIME Intellect has published INTELLECT-1 ( Instruct + Base ), the first 10 billion parameter language model collaboratively trained in 50 days by 30 participants worldwide.

PRIME Intellect used its own PRIME platform, designed to address the main problems of decentralized learning: network unreliability and dynamic management of computing nodes.

The platform utilized a network of 112 H100 GPUs across 3 continents and achieved a compute utilization rate of 96% under optimal conditions.

The training corpus consisted of 1 trillion public dataset tokens with the following percentage distribution: 55% fineweb-edu, 10% fineweb, 20% Stack V1, 10% dclm-baseline, 5% open-web-math.

▶️ Technical specifications:

🟢 Parameters: 10B;
🟢 Layers: 42;
🟢 Attention Heads: 32;
🟢 Hidden Size: 4096;
🟢 Context Length: 8192;
🟢 Vocabulary Size: 128256.

INTELLECT-1 achieved 37.5% accuracy on the MMLU test and 72.26% on HellaSwag, and outperformed several other open-source models on WinoGrande with a score of 65.82%.

While these figures lag slightly behind today's popular models, the results of the experiment are a critical step toward democratizing AI development and preventing the consolidation of AI capabilities within a few organizations.

▶️ GGUF quantized versions of INTELLECT-1_Instruct in 3-bit (5.46 GB) to 8-bit (10.9 GB) bit depths from the LM Studio community.

▶️ Example of inference on Transformers:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("PrimeIntellect/INTELLECT-1")
tokenizer = AutoTokenizer.from_pretrained("PrimeIntellect/INTELLECT-1")

input_text = "%prompt%"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)

print(output_text)


📌 Licensing: Apache 2.0 License.


🟡 Article
🟡 HF Model Kit
🟡 Set of GGUF versions
🟡 Technical report
🟡 Demo
🖥 GitHub

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Papers
با عرض سلام نفر سوم براي مقاله زير رو خالي داريم.

Title: Alzheimer’s disease (AD) classification
using swin transformer wavelet
and Improved Gray Wolf
Optimization (IGWO)

Abstract: Alzheimer’s disease (AD) is a slow neurological disorder that destroys the thought process, and consciousness, of a human. It directly affects the development of mental ability and neurocognitive functionality. The number of patients with Alzheimer’s disease is increasing day by day, especially in old aged people, who are above 60 years of age, and, gradually, it becomes cause of their death. In this research, our goal is to present ALzSwinTNet for Alzheimer’s classification based on FMRI images. The proposed approach uses wavelet fusion in the swin transformer network to extract features. The igwo and fox optimization approaches were used to find the hyperparameters of the model. ALzSwinTNet was able to achieve an accuracy of 0.98 in 4-class classification and 1 in 2-class classification.

journal: https://www.sciencedirect.com/journal/expert-systems-with-applications

if:7.5

هزینه مشارکت برای نفر سوم ۲۰ تومن می باشد. این هزینه صرف تسویه سرورها خواهد شد.

@Raminmousa
@Machine_learn
https://www.tg-me.com/+SP9l58Ta_zZmYmY0
🌟 OmniParser
🟡Arxiv
🖥Github


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Data Structures and Information Retrieval in Python

📓 link

@Machine_learn
Harvard's "Advanced Complex Analysis"

📓Course

@Machine_learn
📃Graph Neural Networks: A Bibliometric Mapping of the Research Landscape and Applications


📎 Study paper


@Machine_learn
Calculus 1 for Honours Mathematics

🔗 Book


@Machine_learn
2025/02/23 21:57:16
Back to Top
HTML Embed Code: