C O M P U T E R V I S I O N : F O U N D AT I O N S A N D A P P L I C AT I O N S
๐ฅ book
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Advancing biomolecular simulation through exascale HPC, AI and quantum computing
๐ Study the paper
@Machine_learn
๐ Study the paper
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Machine learning books and papers
ููุณุช ูพุฑฺูู ูุงู ุฌุฏูุฏ ูู ุฏูุณุชุงู ู
ู ุชููู ุจู ุชูู
ูุงู ู
ุง ุงุถุงูู ุจุดู. ุชูู
ุงูู: Survey on whole slide image target journal: https://www.nature.com/srep/ ููุฑุงุช ูค ู ูฅ ุฑู ูู
ุฏุงุฑูู
ุชูู
ุฏูู
: fmri alzheimer's disease classification target journal:https://www.scโฆ
ุชูู
ุฏูู
:
fmri alzheimer's disease classification
target journal:https://www.sciencedirect.com/journal/computerized-medical-imaging-and-graphics
ููุฑ ูฃ ุฑู ูู ุฏุงุฑูู .
ููุงุฒู ูุฏ ูุณู ูุณุชูู ูู ุจุชููู ูุฒููู ุณุฑูุฑ ุฑู ูพุฑุฏุงุฎุช ููู ู ุชูู ฺูฏุงุฑุด ู ูุงูู ูู ูู ูู ููู.
@Raminmousa
@Machine_learn
https://www.tg-me.com/+SP9l58Ta_zZmYmY0
fmri alzheimer's disease classification
target journal:https://www.sciencedirect.com/journal/computerized-medical-imaging-and-graphics
ููุฑ ูฃ ุฑู ูู ุฏุงุฑูู .
ููุงุฒู ูุฏ ูุณู ูุณุชูู ูู ุจุชููู ูุฒููู ุณุฑูุฑ ุฑู ูพุฑุฏุงุฎุช ููู ู ุชูู ฺูฏุงุฑุด ู ูุงูู ูู ูู ูู ููู.
@Raminmousa
@Machine_learn
https://www.tg-me.com/+SP9l58Ta_zZmYmY0
Telegram
Papers
ุฏุฑ ุงูู ูุงูุงู ูุฑุงุฑ ู
ูุงูุงุชู ูู ูุงุฑ ู
ููููู
ุฑู ุจู ุงุดุชุฑุงู ุจุฒุงุฑูู
.
ูุฑุงุฑ ุงุฒ ูู ุญู ุงูุช ูููู ู ูุงุฑูุงู ุฌุฏูุฏู
ุงุฑุงุฆู ุจุฏูู
@Raminmousa
ูุฑุงุฑ ุงุฒ ูู ุญู ุงูุช ูููู ู ูุงุฑูุงู ุฌุฏูุฏู
ุงุฑุงุฆู ุจุฏูู
@Raminmousa
O1 Replication Journey -- Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?
๐ฅ Github: https://github.com/gair-nlp/o1-journey
๐ Paper: https://arxiv.org/abs/2411.16489v1
๐ Dataset: https://paperswithcode.com/dataset/lima
๐ @Machine_learn
๐ Dataset: https://paperswithcode.com/dataset/lima
Please open Telegram to view this post
VIEW IN TELEGRAM
ShowUI is a lightweight vision-language-action model for GUI agents.
๐ฅ Github: https://github.com/showlab/showui
๐ Paper: https://arxiv.org/abs/2411.17465v1
๐ Dataset: https://huggingface.co/datasets/showlab/ShowUI-desktop-8K
@Machine_learn
๐ Dataset: https://huggingface.co/datasets/showlab/ShowUI-desktop-8K
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
โก๏ธ Biggest open text dataset release of the year: SmolTalk is a 1M sample big synthetic dataset that was used to train SmolLM v2.
TL;DR;
๐งฉ New datasets: Smol-Magpie-Ultra (400K) for instruction tuning; Smol-contraints (36K) for precise output; Smol-rewrite (50K) & Smol-summarize (100K) for rewriting and summarization.
๐ค Public Dataset Integrations: OpenHermes2.5 (100K), MetaMathQA & NuminaMath-CoT, Self-Oss-Starcoder2-Instruct, LongAlign & SystemChats2.0
๐ฅ Outperforms the new Orca-AgenInstruct 1M when trained with 1.7B and 7B models
๐ Outperform models trained on OpenHermes and Magpie Pro on IFEval and MT-Bench
distilabel to generate all new synthetic datasets
๐ค Released under Apache 2.0 on huggingface
Apache 2.0
Synthetic generation pipelines and training code released.
Dataset: https://huggingface.co/datasets/HuggingFaceTB/smoltalk
Generation Code: https://github.com/huggingface/smollm
Training Code: https://github.com/huggingface/alignment-handbook/tree/main/recipes/smollm2
@Machine_learn
TL;DR;
๐งฉ New datasets: Smol-Magpie-Ultra (400K) for instruction tuning; Smol-contraints (36K) for precise output; Smol-rewrite (50K) & Smol-summarize (100K) for rewriting and summarization.
๐ค Public Dataset Integrations: OpenHermes2.5 (100K), MetaMathQA & NuminaMath-CoT, Self-Oss-Starcoder2-Instruct, LongAlign & SystemChats2.0
๐ฅ Outperforms the new Orca-AgenInstruct 1M when trained with 1.7B and 7B models
๐ Outperform models trained on OpenHermes and Magpie Pro on IFEval and MT-Bench
distilabel to generate all new synthetic datasets
๐ค Released under Apache 2.0 on huggingface
Apache 2.0
Synthetic generation pipelines and training code released.
Dataset: https://huggingface.co/datasets/HuggingFaceTB/smoltalk
Generation Code: https://github.com/huggingface/smollm
Training Code: https://github.com/huggingface/alignment-handbook/tree/main/recipes/smollm2
@Machine_learn
fmri alzheimer's disease classification
target journal:https://www.sciencedirect.com/journal/computerized-medical-imaging-and-graphics
ููุฑ ูฃ ุฑู ูู ุฏุงุฑูู .
ููุงุฒู ูุฏ ูุณู ูุณุชูู ูู ุจุชููู ูุฒููู ุณุฑูุฑ ุฑู ูพุฑุฏุงุฎุช ููู .
@Raminmousa
@Machine_learn
https://www.tg-me.com/+SP9l58Ta_zZmYmY0
target journal:https://www.sciencedirect.com/journal/computerized-medical-imaging-and-graphics
ููุฑ ูฃ ุฑู ูู ุฏุงุฑูู .
ููุงุฒู ูุฏ ูุณู ูุณุชูู ูู ุจุชููู ูุฒููู ุณุฑูุฑ ุฑู ูพุฑุฏุงุฎุช ููู .
@Raminmousa
@Machine_learn
https://www.tg-me.com/+SP9l58Ta_zZmYmY0
Telegram
Papers
ุฏุฑ ุงูู ูุงูุงู ูุฑุงุฑ ู
ูุงูุงุชู ูู ูุงุฑ ู
ููููู
ุฑู ุจู ุงุดุชุฑุงู ุจุฒุงุฑูู
.
ูุฑุงุฑ ุงุฒ ูู ุญู ุงูุช ูููู ู ูุงุฑูุงู ุฌุฏูุฏู
ุงุฑุงุฆู ุจุฏูู
@Raminmousa
ูุฑุงุฑ ุงุฒ ูู ุญู ุงูุช ูููู ู ูุงุฑูุงู ุฌุฏูุฏู
ุงุฑุงุฆู ุจุฏูู
@Raminmousa
Machine learning books and papers pinned ยซfmri alzheimer's disease classification target journal:https://www.sciencedirect.com/journal/computerized-medical-imaging-and-graphics ููุฑ ูฃ ุฑู ูู
ุฏุงุฑูู
. ููุงุฒู
ูุฏ ูุณู ูุณุชูู
ูู ุจุชููู ูุฒููู ุณุฑูุฑ ุฑู ูพุฑุฏุงุฎุช ููู . @Raminmousa @Machine_learn https://www.tg-me.com/+SP9l58Ta_zZmYmY0ยป
Please open Telegram to view this post
VIEW IN TELEGRAM
๐Deep learning approaches for non-coding genetic variant effect prediction: current progress and future prospects
๐ Study the paper
@Machine_learn
๐ Study the paper
@Machine_learn
๐ Deep Learning with Python Develop Deep Learning Models on Theano and TensorFLow Using Keras by Jason Brownlee
๐ Book
@Machine_learn
๐ Book
@Machine_learn