imbalanced-DL: Deep Imbalanced Learning in Python
π₯ Github: https://github.com/ntucllab/imbalanced-dl
π Paper: https://arxiv.org/pdf/2308.15457v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
π₯ Github: https://github.com/ntucllab/imbalanced-dl
π Paper: https://arxiv.org/pdf/2308.15457v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
β
LISA: Reasoning Segmentation via Large Language Model
New segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text.
π₯ Github: https://github.com/dvlab-research/lisa
π Paper: https://arxiv.org/abs/2308.00692v2
βοΈ Dataset: https://github.com/dvlab-research/lisa#dataset
@Machine_learn
New segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text.
π₯ Github: https://github.com/dvlab-research/lisa
π Paper: https://arxiv.org/abs/2308.00692v2
βοΈ Dataset: https://github.com/dvlab-research/lisa#dataset
@Machine_learn
π² Anti-Exploration by Random Network Distillation, Tinkoff Research, ICML 2023
We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.
π₯ Github: https://github.com/tinkoff-ai/sac-rnd
π€ Paper: https://proceedings.mlr.press/v202/nikulin23a.html
@Machine_learn
We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.
π₯ Github: https://github.com/tinkoff-ai/sac-rnd
π€ Paper: https://proceedings.mlr.press/v202/nikulin23a.html
@Machine_learn
MLBasicsBook.pdf
3.3 MB
Book: Machine Learning: The Basics
Authors: Alexander Jung
ISBN: -
year: 2023
pages: 287
Tags:#ML
@Machine_learn
Authors: Alexander Jung
ISBN: -
year: 2023
pages: 287
Tags:#ML
@Machine_learn
π AgentBench: Evaluating LLMs as Agents.
AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
π₯ Github: https://github.com/thudm/agentbench
π Paper: https://arxiv.org/abs/2308.03688v1
βοΈ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
π₯ Github: https://github.com/thudm/agentbench
π Paper: https://arxiv.org/abs/2308.03688v1
βοΈ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
Enthought-v1.0.2.pdf
2.4 MB
Plotting with Pandas series
@Machine_learn
@Machine_learn
β
SSLRec: A Self-Supervised Learning Library for Recommendation
SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.
π₯ Github: https://github.com/hkuds/sslrec
π Paper: https://arxiv.org/abs/2308.05697v1
β Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
βοΈ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
ai_machinelearning_big_data
SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.
π₯ Github: https://github.com/hkuds/sslrec
π Paper: https://arxiv.org/abs/2308.05697v1
β Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
βοΈ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
ai_machinelearning_big_data
LightTBNet
π₯ Github: https://github.com/dani-capellan/LightTBNet
π Paper: https://arxiv.org/pdf/2309.02140v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/montgomery-county-x-ray-set
@Machine_learn
π₯ Github: https://github.com/dani-capellan/LightTBNet
π Paper: https://arxiv.org/pdf/2309.02140v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/montgomery-county-x-ray-set
@Machine_learn
LLM_Fine_Tuning_Molecular_Properties
π₯ Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
π Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
π₯ Dataset: https://paperswithcode.com/dataset/moleculenet
@Machine_learn
π₯ Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
π Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
π₯ Dataset: https://paperswithcode.com/dataset/moleculenet
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
InstructionERC
π₯ Github: https://github.com/LIN-SHANG/InstructERC
π Paper: https://arxiv.org/pdf/2309.11911v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
π₯ Github: https://github.com/LIN-SHANG/InstructERC
π Paper: https://arxiv.org/pdf/2309.11911v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
Forwarded from Eng. Hussein Sheikho
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
β Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0
β Main Channel:
https://www.tg-me.com/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
β Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0
β Main Channel:
https://www.tg-me.com/DataScienceM
π£ Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition
π₯ Github: https://github.com/wenet-e2e/wespeaker
π Paper: https://arxiv.org/abs/2309.11730v1
β© Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
βοΈ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
pip3 install wespeakerruntime
π₯ Github: https://github.com/wenet-e2e/wespeaker
π Paper: https://arxiv.org/abs/2309.11730v1
β© Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
βοΈ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
π BayesDLL: Bayesian Deep Learning Library
New Bayesian neural network library for PyTorch for large-scale deep network
π₯ Github: https://github.com/samsunglabs/bayesdll
π Paper: https://arxiv.org/abs/2309.12928v1
βοΈ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
New Bayesian neural network library for PyTorch for large-scale deep network
π₯ Github: https://github.com/samsunglabs/bayesdll
π Paper: https://arxiv.org/abs/2309.12928v1
βοΈ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
Artificial Intelligence Class 10 (2023).pdf
20.8 MB
Book: ARTIFICIAL INTELLIGENCE (SUBJECT CODE 417) CLASS β 3
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
π₯ Github: https://github.com/dvlab-research/longlora
π Paper: https://arxiv.org/pdf/2309.12307v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
π₯ Github: https://github.com/dvlab-research/longlora
π Paper: https://arxiv.org/pdf/2309.12307v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
β fastMONAI: A low-code deep learning library for medical image analysis
Simplifying deep learning for medical imaging.
π₯ Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
π Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
π₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
Simplifying deep learning for medical imaging.
git clone https://github.com/MMIV-ML/fastMONAI
π₯ Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
π Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
π₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
30574277.pdf
20.5 MB
Book: Quantum Mechanics and
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Privacy-preserving in-context learning with differentially private few-shot generation
π₯ Github: https://github.com/microsoft/dp-few-shot-generation
π Paper: https://arxiv.org/pdf/2309.11765v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
π₯ Github: https://github.com/microsoft/dp-few-shot-generation
π Paper: https://arxiv.org/pdf/2309.11765v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
Developing Apps With GPT-4 and ChatGPT (2023).pdf
3 MB
Book: Developing Apps with GPT-4 and
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn