Telegram Web Link
imbalanced-DL: Deep Imbalanced Learning in Python

πŸ–₯ Github: https://github.com/ntucllab/imbalanced-dl

πŸ“• Paper: https://arxiv.org/pdf/2308.15457v1.pdf

πŸ”₯ Dataset: https://paperswithcode.com/dataset/cifar-10

@Machine_learn
βœ… LISA: Reasoning Segmentation via Large Language Model

New segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text.


πŸ–₯ Github: https://github.com/dvlab-research/lisa

πŸ“• Paper: https://arxiv.org/abs/2308.00692v2

β˜‘οΈ Dataset: https://github.com/dvlab-research/lisa#dataset

@Machine_learn
🎲 Anti-Exploration by Random Network Distillation, Tinkoff Research, ICML 2023

We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.


πŸ–₯ Github: https://github.com/tinkoff-ai/sac-rnd

πŸ€“ Paper: https://proceedings.mlr.press/v202/nikulin23a.html

@Machine_learn
MLBasicsBook.pdf
3.3 MB
Book: Machine Learning: The Basics
Authors: Alexander Jung
ISBN: -
year: 2023
pages: 287
Tags:#ML
@Machine_learn
πŸš€ AgentBench: Evaluating LLMs as Agents.

AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.


πŸ–₯ Github: https://github.com/thudm/agentbench

πŸ“• Paper: https://arxiv.org/abs/2308.03688v1

β˜‘οΈ Dataset: https://paperswithcode.com/dataset/alfworld

@Machine_learn
βœ… SSLRec: A Self-Supervised Learning Library for Recommendation

SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.


πŸ–₯ Github: https://github.com/hkuds/sslrec

πŸ“• Paper: https://arxiv.org/abs/2308.05697v1

β›“ Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md

β˜‘οΈ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Eng. Hussein Sheikho
This channels is for Programmers, Coders, Software Engineers.

0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages

βœ… Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0

βœ… Main Channel:
https://www.tg-me.com/DataScienceM
πŸ—£ Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition


pip3 install wespeakerruntime

πŸ–₯ Github: https://github.com/wenet-e2e/wespeaker

πŸ“• Paper: https://arxiv.org/abs/2309.11730v1

⏩ Demo: https://huggingface.co/spaces/wenet/wespeaker_demo

⭐️ Dataset: https://paperswithcode.com/dataset/wenetspeech

@Machine_learn
πŸŽ“ BayesDLL: Bayesian Deep Learning Library

New Bayesian neural network library for PyTorch for large-scale deep network


πŸ–₯ Github: https://github.com/samsunglabs/bayesdll

πŸ“• Paper: https://arxiv.org/abs/2309.12928v1

⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower

@Machine_learn
Artificial Intelligence Class 10 (2023).pdf
20.8 MB
Book: ARTIFICIAL INTELLIGENCE (SUBJECT CODE 417) CLASS – 3
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models

πŸ–₯ Github: https://github.com/dvlab-research/longlora

πŸ“• Paper: https://arxiv.org/pdf/2309.12307v1.pdf

πŸ”₯ Dataset: https://paperswithcode.com/dataset/pg-19

@Machine_learn
βž• fastMONAI: A low-code deep learning library for medical image analysis

Simplifying deep learning for medical imaging.


git clone https://github.com/MMIV-ML/fastMONAI

πŸ–₯ Github: https://github.com/MMIV-ML/fastMONAI

Project: https://fastmonai.no

πŸ“• Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203

πŸ–₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb

@Machine_learn
30574277.pdf
20.5 MB
Book: Quantum Mechanics and
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Privacy-preserving in-context learning with differentially private few-shot generation

πŸ–₯ Github: https://github.com/microsoft/dp-few-shot-generation

πŸ“• Paper: https://arxiv.org/pdf/2309.11765v1.pdf

πŸ”₯ Dataset: https://paperswithcode.com/dataset/ag-news

@Machine_learn
Developing Apps With GPT-4 and ChatGPT (2023).pdf
3 MB
Book: Developing Apps with GPT-4 and
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
2025/02/23 20:15:53
Back to Top
HTML Embed Code: