This media is not supported in your browser
VIEW IN TELEGRAM
✏️ Deep Geometrized Cartoon Line Inbetweening
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
🖥 Github: https://github.com/lisiyao21/animeinbet
☑️ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
📕 Paper: https://arxiv.org/pdf/2309.16643v1.pdf
⭐️ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
🖥 Github: https://github.com/lisiyao21/animeinbet
☑️ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
📕 Paper: https://arxiv.org/pdf/2309.16643v1.pdf
⭐️ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
Oreilly.Generative.Deep.Learning.pdf
57.9 MB
Book: Generative Deep Learning
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
Class Incremental Learning via Likelihood Ratio Based Task Prediction
🖥 Github: https://github.com/linhaowei1/tplr
📕 Paper: https://arxiv.org/pdf/2309.15048v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
🖥 Github: https://github.com/linhaowei1/tplr
📕 Paper: https://arxiv.org/pdf/2309.15048v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
Atom2D
🖥 Github: https://github.com/vincentx15/atom2d
📕 Paper: https://arxiv.org/pdf/2309.16519v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/atom3d
@Machine_learn
🖥 Github: https://github.com/vincentx15/atom2d
📕 Paper: https://arxiv.org/pdf/2309.16519v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/atom3d
@Machine_learn
☑️ Efficient Streaming Language Models with Attention Sinks
StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.
🖥 Github: https://github.com/mit-han-lab/streaming-llm
📕 Paper: http://arxiv.org/abs/2309.17453
⭐️ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.
🖥 Github: https://github.com/mit-han-lab/streaming-llm
📕 Paper: http://arxiv.org/abs/2309.17453
⭐️ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
🤖 GenSim: Generating Robotic Simulation Tasks via Large Language Models
🖥 Github: https://github.com/liruiw/gensim
✔️ Project: https://liruiw.github.io/gensim
📕 Paper: https://arxiv.org/abs/2310.01361v1
✅ Dataset: https://huggingface.co/datasets/Gen-Sim/Gen-Sim
⭐️ Demos: https://huggingface.co/spaces/Gen-Sim/Gen-Sim
@Machine_learn
🖥 Github: https://github.com/liruiw/gensim
✔️ Project: https://liruiw.github.io/gensim
📕 Paper: https://arxiv.org/abs/2310.01361v1
✅ Dataset: https://huggingface.co/datasets/Gen-Sim/Gen-Sim
⭐️ Demos: https://huggingface.co/spaces/Gen-Sim/Gen-Sim
@Machine_learn
✅️ T3Bench: Benchmarking Current Progress in Text-to-3D Generation
🖥 Github: https://github.com/THU-LYJ-Lab/T3Bench
📕 Paper: https://arxiv.org/abs/2310.02977v1
⭐️ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
🖥 Github: https://github.com/THU-LYJ-Lab/T3Bench
📕 Paper: https://arxiv.org/abs/2310.02977v1
⭐️ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
💻 Graph Structure Learning Benchmark (GSLB)
pip install GSLB
🖥 Github: https://github.com/gsl-benchmark/gslb
📕 Paper: https://arxiv.org/abs/2310.05163v1
⭐️ Paper collection: https://github.com/GSL-Benchmark/Awesome-Graph-Structure-Learning
@Machine_learn
pip install GSLB
🖥 Github: https://github.com/gsl-benchmark/gslb
📕 Paper: https://arxiv.org/abs/2310.05163v1
⭐️ Paper collection: https://github.com/GSL-Benchmark/Awesome-Graph-Structure-Learning
@Machine_learn
G4SATBench
🖥 Github: https://github.com/zhaoyu-li/g4satbench
📕 Paper: https://arxiv.org/pdf/2309.16941v1.pdf
🔥 Tasks: https://paperswithcode.com/task/benchmarking
@Machine_learn
🖥 Github: https://github.com/zhaoyu-li/g4satbench
📕 Paper: https://arxiv.org/pdf/2309.16941v1.pdf
🔥 Tasks: https://paperswithcode.com/task/benchmarking
@Machine_learn
Wiley_Artificial_Intelligence_Programming_with_Python_From_Zero.pdf
37.2 MB
Book: ArtificialIntelligence Programming
withPython F R O MZ E R OT OH E R O
Authors: Perry Xiao
ISBN: 978-1-119-82094-9 (ebk)
year: 2022
pages: 716
Tags:#AI #DL
@Machine_learn
withPython F R O MZ E R OT OH E R O
Authors: Perry Xiao
ISBN: 978-1-119-82094-9 (ebk)
year: 2022
pages: 716
Tags:#AI #DL
@Machine_learn
Code for MIMO Activation Function
🖥 Github: https://github.com/ljy9912/mimo_nn
📕 Paper: https://arxiv.org/pdf/2309.17194v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
🖥 Github: https://github.com/ljy9912/mimo_nn
📕 Paper: https://arxiv.org/pdf/2309.17194v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
🌽 Harnessing Administrative Data Inventories to Create a Reliable Transnational Reference Database for Crop Type Monitoring
🖥 Github: https://github.com/maja601/eurocrops
📕 Paper: https://arxiv.org/pdf/2310.06393v1.pdf
⭐️ Dataset: https://syncandshare.lrz.de/getlink/fiAD95cTrXbnKMrdZYrFFcN8/
@Machine_learn
🖥 Github: https://github.com/maja601/eurocrops
📕 Paper: https://arxiv.org/pdf/2310.06393v1.pdf
⭐️ Dataset: https://syncandshare.lrz.de/getlink/fiAD95cTrXbnKMrdZYrFFcN8/
@Machine_learn
✅ Mini-DALLE3: Interactive Text to Image by Prompting Large Language Models
🖥 Github: https://github.com/Zeqiang-Lai/Mini-DALLE3
📕 Paper: https://arxiv.org/abs/2310.07653v1
⭐️ Dataset: https://paperswithcode.com/dataset/mmlu
@Machine_learn
🖥 Github: https://github.com/Zeqiang-Lai/Mini-DALLE3
📕 Paper: https://arxiv.org/abs/2310.07653v1
⭐️ Dataset: https://paperswithcode.com/dataset/mmlu
@Machine_learn
AG3D: Learning to Generate 3D Avatars from 2D Image Collections (ICCV 2023)
🖥 Github: https://github.com/zj-dong/AG3D
📕 Paper: https://arxiv.org/abs/2305.02312
🚀Video: https://youtu.be/niP1YhJXEBE
⭐️ Project: https://zj-dong.github.io/AG3D/
@Machine_learn
🖥 Github: https://github.com/zj-dong/AG3D
📕 Paper: https://arxiv.org/abs/2305.02312
🚀Video: https://youtu.be/niP1YhJXEBE
⭐️ Project: https://zj-dong.github.io/AG3D/
@Machine_learn
Python.for.Scientists.pdf
7.1 MB
Book: Python for Scientists
Third Edition
Authors: JOHN M. STEWART
ISBN: 978-1-119-82094-9 (ebk)
year: 2023
pages: 301
Tags:#Python
@Machine_learn
Third Edition
Authors: JOHN M. STEWART
ISBN: 978-1-119-82094-9 (ebk)
year: 2023
pages: 301
Tags:#Python
@Machine_learn
STGM: Spatio-Temporal Graph Mixformer for Traffic Forecasting
🖥 Github: https://github.com/Mouradost/STGM
📕 Paper: https://www.sciencedirect.com/science/article/abs/pii/S0957417423007832?via%3Dihub
🔥 Datasets: https://paperswithcode.com/dataset/metr-la
↪️ Tasks: https://paperswithcode.com/task/traffic-prediction
@Machine_learn
🖥 Github: https://github.com/Mouradost/STGM
📕 Paper: https://www.sciencedirect.com/science/article/abs/pii/S0957417423007832?via%3Dihub
🔥 Datasets: https://paperswithcode.com/dataset/metr-la
↪️ Tasks: https://paperswithcode.com/task/traffic-prediction
@Machine_learn
PHA
🖥 Github: https://github.com/bumble666/pha
📕 Paper: https://arxiv.org/pdf/2310.11670v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/glue
@Machine_learn
cd PHA
pip install -r requirements.txt
🖥 Github: https://github.com/bumble666/pha
📕 Paper: https://arxiv.org/pdf/2310.11670v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/glue
@Machine_learn
Putting the Object Back into Video Object Segmentation (Cutie)
🖥 Github: https://github.com/hkchengrex/Cutie
🖥 Colab: https://colab.research.google.com/drive/1yo43XTbjxuWA7XgCUO9qxAi7wBI6HzvP?usp=sharing
📕 Paper: https://arxiv.org/abs/2310.12982v1
🚀Project: https://hkchengrex.github.io/Cutie/
@Machine_learn
git clone https://github.com/hkchengrex/Cutie.git
🖥 Github: https://github.com/hkchengrex/Cutie
🖥 Colab: https://colab.research.google.com/drive/1yo43XTbjxuWA7XgCUO9qxAi7wBI6HzvP?usp=sharing
📕 Paper: https://arxiv.org/abs/2310.12982v1
🚀Project: https://hkchengrex.github.io/Cutie/
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
🏅MixSort
MixSort is the proposed baseline tracker in SportMOT.
🖥 Github: https://github.com/MCG-NJU/MixSort
📕 Paper: https://arxiv.org/pdf/2304.05170.pdf
⭐️ SportsMOT: https://github.com/MCG-NJU/SportsMOT
@Machine_learn
MixSort is the proposed baseline tracker in SportMOT.
🖥 Github: https://github.com/MCG-NJU/MixSort
📕 Paper: https://arxiv.org/pdf/2304.05170.pdf
⭐️ SportsMOT: https://github.com/MCG-NJU/SportsMOT
@Machine_learn