Weighted Deep Neural Network Ensemble Approach for.pdf
1.4 MB
Weighted Deep Neural Network Ensemble Approach for
Multi-Domain Sentiment Analysis Author: @Raminmousa Doi:https://dx.doi.org/10.22105/jarie.2021.288364.1332 cite: Mousa, Ramin, et al. "Weighted Deep Neural Network Ensemble Approach for Multi-Domain Sentiment Analysis." Journal of Applied Research on Industrial Engineering (2021). link: https://www.researchgate.net/publication/360645256_Weighted_Deep_Neural_Network_Ensemble_Approach_for_Multi-Domain_Sentiment_Analysis @Machine_learn
Multi-Domain Sentiment Analysis Author: @Raminmousa Doi:https://dx.doi.org/10.22105/jarie.2021.288364.1332 cite: Mousa, Ramin, et al. "Weighted Deep Neural Network Ensemble Approach for Multi-Domain Sentiment Analysis." Journal of Applied Research on Industrial Engineering (2021). link: https://www.researchgate.net/publication/360645256_Weighted_Deep_Neural_Network_Ensemble_Approach_for_Multi-Domain_Sentiment_Analysis @Machine_learn
ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer
Github: https://github.com/locuslab/convmixer
Paper: https://arxiv.org/pdf/2201.09792v1.pdf
@Machine_learn
Github: https://github.com/locuslab/convmixer
Paper: https://arxiv.org/pdf/2201.09792v1.pdf
@Machine_learn
📹 VRT: A Video Restoration Transformer
Github: https://github.com/jingyunliang/vrt
Paper: https://arxiv.org/abs/2201.12288
Dataset: https://paperswithcode.com/dataset/gopro
@Machine_learn
Github: https://github.com/jingyunliang/vrt
Paper: https://arxiv.org/abs/2201.12288
Dataset: https://paperswithcode.com/dataset/gopro
@Machine_learn
📝 Automated Crossword Solving
Pretrained models, precomputed FAISS embeddings, and a crossword clue-answer dataset.
Github: https://github.com/albertkx/berkeley-crossword-solver
Paper: https://arxiv.org/abs/2205.09665v1
Dataset: https://www.xwordinfo.com/JSON/
@Machine_learn
Pretrained models, precomputed FAISS embeddings, and a crossword clue-answer dataset.
Github: https://github.com/albertkx/berkeley-crossword-solver
Paper: https://arxiv.org/abs/2205.09665v1
Dataset: https://www.xwordinfo.com/JSON/
@Machine_learn
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)
https://github.com/Garfield-kh/PoseTriplet
@Machine_lean
https://github.com/Garfield-kh/PoseTriplet
@Machine_lean
GitHub
GitHub - Garfield-kh/PoseTriplet: [CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under…
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral) - Garfield-kh/PoseTriplet
📍 Perturbation Augmentation for Fairer NLP
Responsible NLP projects from Meta AI.
Github: https://github.com/facebookresearch/responsiblenlp
Paper: https://arxiv.org/abs/2205.12586v1
Dataset: https://paperswithcode.com/dataset/glue
@Machine_learn
Responsible NLP projects from Meta AI.
Github: https://github.com/facebookresearch/responsiblenlp
Paper: https://arxiv.org/abs/2205.12586v1
Dataset: https://paperswithcode.com/dataset/glue
@Machine_learn
B978-0-12-810408-8.00020-1.pdf
754.9 KB
Randomized Deep Learning Methods for Clinical Trial Enrichment and Design in Alzheimer’s Disease #Chapter15
@Machine_learn
@Machine_learn
B978-0-12-810408-8.00022-5.pdf
1.5 MB
Deep Networks and Mutual Information Maximization for Cross-Modal Medical Image Synthesis #Chapter16
@Machine_learn
@Machine_learn
B978-0-12-810408-8.00023-7.pdf
1.7 MB
Natural Language Processing for Large-Scale Medical Image Analysis Using Deep Learning
#Chapter17
@Machine_learn
#Chapter17
@Machine_learn
🦠 MaSIF- Molecular Surface Interaction Fingerprints: Geometric deep learning to decipher patterns in protein molecular surfaces.
MaSIF is a proof-of-concept method to decipher patterns in protein surfaces important for specific biomolecular interactions.
Github: https://github.com/LPDI-EPFL/masif
Paper: https://www.nature.com/articles/s41592-019-0666-6
Data: https://github.com/LPDI-EPFL/masif#MaSIF-data-preparation
@Machine_learn
MaSIF is a proof-of-concept method to decipher patterns in protein surfaces important for specific biomolecular interactions.
Github: https://github.com/LPDI-EPFL/masif
Paper: https://www.nature.com/articles/s41592-019-0666-6
Data: https://github.com/LPDI-EPFL/masif#MaSIF-data-preparation
@Machine_learn
🪄 Investigating the Role of Image Retrieval for Visual Localization -- An exhaustive benchmark.
Github: https://github.com/naver/kapture-localization
Paper: https://arxiv.org/abs/2205.15761v1
Data: https://paperswithcode.com/dataset/inloc
@Machine_learn
Github: https://github.com/naver/kapture-localization
Paper: https://arxiv.org/abs/2205.15761v1
Data: https://paperswithcode.com/dataset/inloc
@Machine_learn
⛩ XBound-Former: Toward Cross-scale Boundary Modeling in Transformers
Github: https://github.com/naiyugao/panopticdepth
Paper: https://arxiv.org/abs/2206.00806v1
Dataset: https://paperswithcode.com/dataset/kvasir-seg
@Machine_learn
Github: https://github.com/naiyugao/panopticdepth
Paper: https://arxiv.org/abs/2206.00806v1
Dataset: https://paperswithcode.com/dataset/kvasir-seg
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
Chinese students ride bicycles to build their own drones.
This bike is the latest artificial intelligence technology that allows it to learn "like a human". Able to identify and track. () (() () (
This operation requires 100 accounts per second! The speed and efficiency of artificial intelligence is so high that these calculations can be performed with high accuracy. And make the bike smart enough to act like a human and make decisions.
+ In short, I can tell you that you can say with this bike, go get two loaves of bread and come back. It will do it for you.
https://www.tg-me.com/Machine_learn
This bike is the latest artificial intelligence technology that allows it to learn "like a human". Able to identify and track. () (() () (
This operation requires 100 accounts per second! The speed and efficiency of artificial intelligence is so high that these calculations can be performed with high accuracy. And make the bike smart enough to act like a human and make decisions.
+ In short, I can tell you that you can say with this bike, go get two loaves of bread and come back. It will do it for you.
https://www.tg-me.com/Machine_learn
با عرض سلام موضوعات پيشنهادي تز
برای دوستانی که نیاز دارن در ادامه اورده شده است.
master thesis
پيش بيني بار كوتاه مدت با استفاده از رويكردهاي يادگيري تركيبي
طبقه بندي رضايت مشتريان بانكي و موسسات اعتباري با استفاده از رويكردهاي بازگشتي
طبقه بندي اخبار جعل با استفاده از رويكرد تنسور سه بعدي و bert
پيشبيني قيمت سهام با استفاده از اطلاعات تويتر و ماركت
پيش بيني قيمت crypto با استفاده از اطلاعات hashrate
phd thesis
بهبود رویکردهای یادگیری عمیق بر روی اخبار جعل و شایعات
بهبود رویکرد های یادگیری عمیق ترکیبی جهت دستیابی به پورتوفولی بهینه
بهبود رویکردهای ترکیبی یادگیری عمیق برای طبقه بندی crypto با استفاده از اطلاعات hashrate
ارائه رویکردهای مبتنی بر وزن دهی غیر تصادفی در یادگیری عمیق
بهبود یادگیری انتقالی در سری زمانی
ارائه مدل های انتقالی برای طبقه بندی های سری زمانی
جهت مشاوره موضوعات می تونین با بنده در ارتباط باشین
@Raminmousa
برای دوستانی که نیاز دارن در ادامه اورده شده است.
master thesis
پيش بيني بار كوتاه مدت با استفاده از رويكردهاي يادگيري تركيبي
طبقه بندي رضايت مشتريان بانكي و موسسات اعتباري با استفاده از رويكردهاي بازگشتي
طبقه بندي اخبار جعل با استفاده از رويكرد تنسور سه بعدي و bert
پيشبيني قيمت سهام با استفاده از اطلاعات تويتر و ماركت
پيش بيني قيمت crypto با استفاده از اطلاعات hashrate
phd thesis
بهبود رویکردهای یادگیری عمیق بر روی اخبار جعل و شایعات
بهبود رویکرد های یادگیری عمیق ترکیبی جهت دستیابی به پورتوفولی بهینه
بهبود رویکردهای ترکیبی یادگیری عمیق برای طبقه بندی crypto با استفاده از اطلاعات hashrate
ارائه رویکردهای مبتنی بر وزن دهی غیر تصادفی در یادگیری عمیق
بهبود یادگیری انتقالی در سری زمانی
ارائه مدل های انتقالی برای طبقه بندی های سری زمانی
جهت مشاوره موضوعات می تونین با بنده در ارتباط باشین
@Raminmousa
🎆 Optimizing Relevance Maps of Vision Transformers Improves Robustness
This code allows to finetune the explainability maps of Vision Transformers to enhance robustness.
Github: https://github.com/hila-chefer/robustvit
Colab: https://colab.research.google.com/github/hila-chefer/RobustViT/blob/master/RobustViT.ipynb
Paper: https://arxiv.org/abs/2206.01161
Dataset: https://github.com/UnsupervisedSemanticSegmentation/ImageNet-S
@Machine_learn
This code allows to finetune the explainability maps of Vision Transformers to enhance robustness.
Github: https://github.com/hila-chefer/robustvit
Colab: https://colab.research.google.com/github/hila-chefer/RobustViT/blob/master/RobustViT.ipynb
Paper: https://arxiv.org/abs/2206.01161
Dataset: https://github.com/UnsupervisedSemanticSegmentation/ImageNet-S
@Machine_learn
Invertible Neural Networks for Graph Prediction
Github: https://github.com/hamrel-cxu/invertible-graph-neural-network-ignn
Paper: https://arxiv.org/abs/2206.01163v1
@Machine_learn
Github: https://github.com/hamrel-cxu/invertible-graph-neural-network-ignn
Paper: https://arxiv.org/abs/2206.01163v1
@Machine_learn
Quantum Advantage in Learning from Experiments
http://ai.googleblog.com/2022/06/quantum-advantage-in-learning-from.html
@Machine_learn
http://ai.googleblog.com/2022/06/quantum-advantage-in-learning-from.html
@Machine_learn
research.google
Quantum Advantage in Learning from Experiments
Posted by Jarrod McClean, Staff Research Scientist, Google Quantum AI, and Hsin-Yuan Huang, Graduate Student, Caltech In efforts to learn about the...