Telegram Web Link
The StatQuest Illustrated Guide To Machine Learning

by stamphet phd ,josh

The StatQuest Illustrated Guide To Machine Learning by stamphet phd ,josh

#book _req @Raminmousa
4👍1
UniSRec

The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.

Github: https://github.com/rucaibox/unisrec

Paper: https://arxiv.org/abs/2206.05941v1

Google Drive: https://drive.google.com/drive/folders/1Uik0fMk4oquV_bS9lXTZuExAYbIDkEMW?usp=sharing

@Machine_learn
👍1
يكي از مهم ترين چالش هاي طبقه بندي سند اين كه مدل ها به صورت ٢ بعدي به متن و طبقه بندي ان مي پردازند، در واقع مكان قرار گيري جمله در سند كاملا ناديده گرفته ميشه. در اين مقاله ساختار تنسور سه بعدي را پيشنهاد دادم كه جملات در سند، كلمات در جملات و بردار تعبيه شده ي ان ها را در نظر ميگيره.
به زودي فايل كامل مقاله رو در كانال ميزارم و تقريبا فرايند ثبتش تموم شده.

@Raminmousa
1
DEEP LEARNING INTERVIEWS REAL-WORLD DEEP LEARNING INTERVIEW PROBLEMS & SOLUTIONS
#book #DL

book

@Machine_learn

link: https://arxiv.org/pdf/2201.00650.pdf
deep-learning-with-python-meap-2nd-ed.pdf
8.8 MB
Deep Learning with Python
Second Edition Version 4
#book #DL #python
@Machine_learn
8
👁‍🗨 CVNets: A library for training computer vision networks

Improved model, MobileViTv2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection.

Github: https://github.com/apple/ml-cvnets

Examples: https://github.com/apple/ml-cvnets/blob/main/docs/source/en/models

Paper: https://arxiv.org/abs/2206.02680v1

Dataset: https://paperswithcode.com/dataset/coco

@Machine_learn
4👍1
This media is not supported in your browser
VIEW IN TELEGRAM
عيد الضحي مبارك
كل عام و انتم بخير

@Machine_learn
12
02213cb4-b391-4516-adcd-57243ced8eed.pdf
1.7 MB
PySpark & Spark SQL
Spark SQL is Apache Spark's #Cheat_Sheet @Machine_learn
4
jep.28.2.3.pdf
1.6 MB
Big Data: New Tricks for Econometrics #Book @Machine_learn
6
Can CNNs Be More Robust Than Transformers?

CNN architectures without any attention-like operations that is as robust as, or even more robust than, Transformers.

Github: https://github.com/ucsc-vlaa/robustcnn

Paper: https://arxiv.org/abs/2206.03452v1

Dataset: https://paperswithcode.com/dataset/imagenet-r

@Machine_learn
👍1
2025/07/08 13:13:29
Back to Top
HTML Embed Code: