Learning Neural Causal Models with Active Interventions
Github: https://github.com/nke001/causal_learning_unknown_interventions
Paper: https://arxiv.org/abs/2109.02429v1
@Machine_learn
Github: https://github.com/nke001/causal_learning_unknown_interventions
Paper: https://arxiv.org/abs/2109.02429v1
@Machine_learn
سلام
دوستاني كه راجع به پياده سازي پايان نامه , مقاله و يا ... مشكل دارند، مي تونن با ايدي بنده در ارتباط باشند.
telg: @Raminmousa
همچنين جهت صحبت كردن راجع به موارد گفته شده مي تونن با Whats app بنده در ارتباط باشند.
Whats app: +989333900804
دوستاني كه راجع به پياده سازي پايان نامه , مقاله و يا ... مشكل دارند، مي تونن با ايدي بنده در ارتباط باشند.
telg: @Raminmousa
همچنين جهت صحبت كردن راجع به موارد گفته شده مي تونن با Whats app بنده در ارتباط باشند.
Whats app: +989333900804
Paper:
https://arxiv.org/pdf/2105.06993.pdf
Project Page:
https://omnimatte.github.io/
Github:
https://github.com/erikalu/omnimatte
Supplimentary material:
https://omnimatte.github.io/supplementary/index.html
Explained:
https://www.youtube.com/watch?v=lCBSGOwV-_o
@Machine_learn
https://arxiv.org/pdf/2105.06993.pdf
Project Page:
https://omnimatte.github.io/
Github:
https://github.com/erikalu/omnimatte
Supplimentary material:
https://omnimatte.github.io/supplementary/index.html
Explained:
https://www.youtube.com/watch?v=lCBSGOwV-_o
@Machine_learn
omnimatte.github.io
Omnimatte: Associating Objects and Their Effects in Video
Project page for 'Omnimatte: Associating Objects and Their Effects in Video.'
Reinforcement Learning Lecture Series (2021) - A comprehensive look at modern reinforcement learning by DeepMind & UCL.
Course Page:
https://deepmind.com/learning-resources/reinforcement-learning-series-2021
Lectures:
https://www.youtube.com/playlist?list=PLqYmG7hTraZDVH599EItlEWsUOsJbAodm
@Machine_learn
Course Page:
https://deepmind.com/learning-resources/reinforcement-learning-series-2021
Lectures:
https://www.youtube.com/playlist?list=PLqYmG7hTraZDVH599EItlEWsUOsJbAodm
@Machine_learn
Google DeepMind
Artificial intelligence could be one of humanity’s most useful inventions. We research and build safe artificial intelligence systems. We're committed to solving intelligence, to advance science...
با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند:
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
Machine learning books and papers pinned «با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند: 1-Deep Learning Basic -01_Introduction --01_How_TensorFlow_Works…»
Texformer: 3D Human Texture Estimation from a Single Image with Transformers
Github: https://github.com/xuxy09/texformer
Paper: http://arxiv.org/abs/2109.02563
Meta data: https://www.dropbox.com/s/ekxn300cuw8bw6b/meta.zip
@Machine_learn
Github: https://github.com/xuxy09/texformer
Paper: http://arxiv.org/abs/2109.02563
Meta data: https://www.dropbox.com/s/ekxn300cuw8bw6b/meta.zip
@Machine_learn
2104.11475.pdf
349.6 KB
A study on Ensemble Learning for Time Series
Forecasting and the need for Meta-Learning #Paper #2021 @Machine_learn
Forecasting and the need for Meta-Learning #Paper #2021 @Machine_learn
2104.02395.pdf
417.4 KB
Ensemble deep learning: A review #Paper #2021 @Machine_learn
2101.08387_2.pdf
967.4 KB
A Survey on Ensemble Learning under the Era of Deep Learning #Paper #2021 @Machine_learn
✅ AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab
Github: https://github.com/alibaba/AliceMind
Paper: https://arxiv.org/abs/2109.05687v1
Dataset: https://paperswithcode.com/dataset/glue
@Machine_learn
Github: https://github.com/alibaba/AliceMind
Paper: https://arxiv.org/abs/2109.05687v1
Dataset: https://paperswithcode.com/dataset/glue
@Machine_learn
sensors-21-05413-v2.pdf
2.3 MB
A New Deep Learning-Based Methodology for Video Deepfake
Detection Using XGBoost #Deepfake #Paper @Machine_learn
Detection Using XGBoost #Deepfake #Paper @Machine_learn
1-s2.0-S1738573319308587-main.pdf
1.8 MB
ConvXGB: A new deep learning model for classification problems
based on CNN and XGBoost #XGBoost #Paper @Machine_learn
based on CNN and XGBoost #XGBoost #Paper @Machine_learn
2102.07718.pdf
902.5 KB
TI-Capsule: Capsule Network for Stock Exchange Prediction #Paper #2021 Author:@Raminmousa @Machine_learn
Dynamic Slimmable Network (DS-Net)
Github: https://github.com/M3DV/AlignShift
Paper: https://arxiv.org/abs/2109.10060v1 @Machine_learn
Github: https://github.com/M3DV/AlignShift
Paper: https://arxiv.org/abs/2109.10060v1 @Machine_learn
CompilerGym: Robust, Performant Compiler Optimization Environments for AI Research
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks.
Github: https://github.com/facebookresearch/CompilerGym
Documents: https://facebookresearch.github.io/CompilerGym/
Paper: https://arxiv.org/abs/2109.08267v1 @Machine_learn
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks.
Github: https://github.com/facebookresearch/CompilerGym
Documents: https://facebookresearch.github.io/CompilerGym/
Paper: https://arxiv.org/abs/2109.08267v1 @Machine_learn