Tapsai2021_Book_ThaiNaturalLanguageProcessing.pdf
15 MB
Thai Natural Language
Processing
Word Segmentation, Semantic Analysis,
and Application #NLP #Book #2021
@Machine_learn
Processing
Word Segmentation, Semantic Analysis,
and Application #NLP #Book #2021
@Machine_learn
2021_Book_FormalisingNaturalLanguagesApp.pdf
33.3 MB
Formalising Natural
Languages: Applications
to Natural Language
Processing and Digital
Humanities #NLP #Book #2021
@Machine_learn
Languages: Applications
to Natural Language
Processing and Digital
Humanities #NLP #Book #2021
@Machine_learn
Sabharwal-Agrawal2021_Book_Hands-onQuestionAnsweringSyste.pdf
4.8 MB
Hands-on Question
Answering Systems
with BERT
Applications in Neural
Networks and Natural
Language Processing #NLP #BERT #book #2021
@Machine_learn
Answering Systems
with BERT
Applications in Neural
Networks and Natural
Language Processing #NLP #BERT #book #2021
@Machine_learn
Cicolani2021_Book_BeginningRoboticsWithRaspberry.pdf
7.3 MB
Beginning Robotics
with Raspberry Pi
and Arduino
Using Python and OpenCV
Second Edition #OpenCv #book #2021
@Machine_learn
with Raspberry Pi
and Arduino
Using Python and OpenCV
Second Edition #OpenCv #book #2021
@Machine_learn
2021_Book_SmartComputingTechniquesAndApp.pdf
33.6 MB
Smart Computing
Techniques and Applications
Proceedings of the Fourth International
Conference on Smart Computing
and Informatics, Volume 1 #book #2021
@Machine_learn
Techniques and Applications
Proceedings of the Fourth International
Conference on Smart Computing
and Informatics, Volume 1 #book #2021
@Machine_learn
🔍 TOOD: Task-aligned One-stage Object Detection
Github: https://github.com/fcjian/TOOD
Paper: https://arxiv.org/abs/2108.07755v2
Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
Github: https://github.com/fcjian/TOOD
Paper: https://arxiv.org/abs/2108.07755v2
Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
🔗 A Unified Objective for Novel Class Discovery
Github: https://github.com/DonkeyShot21/UNO
Paper: https://arxiv.org/abs/2108.08536v2
Dataset: https://paperswithcode.com/dataset/cifar-100
@Machine_learn
Github: https://github.com/DonkeyShot21/UNO
Paper: https://arxiv.org/abs/2108.08536v2
Dataset: https://paperswithcode.com/dataset/cifar-100
@Machine_learn
💡 X-modaler: A Versatile and High-performance Codebase for Cross-modal Analytics
Github: https://github.com/yehli/xmodaler
Paper: https://arxiv.org/abs/2108.08217v1
Project: https://xmodaler.readthedocs.io/en/latest/
@Machine_learn
Github: https://github.com/yehli/xmodaler
Paper: https://arxiv.org/abs/2108.08217v1
Project: https://xmodaler.readthedocs.io/en/latest/
@Machine_learn
🧍♂ D3D-HOI: Dynamic 3D Human-Object Interactions from Videos
Github: https://github.com/facebookresearch/d3d-hoi
Paper: https://arxiv.org/abs/2108.08420v1
Dataset: https://dl.fbaipublicfiles.com/d3d-hoi/d3dhoi_video_data.zip
@Machine_learn
Github: https://github.com/facebookresearch/d3d-hoi
Paper: https://arxiv.org/abs/2108.08420v1
Dataset: https://dl.fbaipublicfiles.com/d3d-hoi/d3dhoi_video_data.zip
@Machine_learn
GitHub
GitHub - facebookresearch/d3d-hoi: We create D3D-HOI a dataset of monocular videos with ground truth annotations of 3D object pose…
We create D3D-HOI a dataset of monocular videos with ground truth annotations of 3D object pose and part motion during human-object interaction. - facebookresearch/d3d-hoi
🕸 Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study
Github: https://github.com/VITA-Group/Deep_GCN_Benchmarking
Paper: https://arxiv.org/abs/2108.10521v1
@Machine_learn
Github: https://github.com/VITA-Group/Deep_GCN_Benchmarking
Paper: https://arxiv.org/abs/2108.10521v1
@Machine_learn
با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند:
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
📶 ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation
Github: https://github.com/segmentationblwx/sssegmentation
Paper: https://arxiv.org/abs/2108.12382v1
Dataset: https://cs.stanford.edu/~roozbeh/pascal-context/
@Machine_learn
Github: https://github.com/segmentationblwx/sssegmentation
Paper: https://arxiv.org/abs/2108.12382v1
Dataset: https://cs.stanford.edu/~roozbeh/pascal-context/
@Machine_learn
🌐 A Partition Filter Network for Joint Entity and Relation Extraction
Github: https://github.com/Coopercoppers/PFN
Paper: https://arxiv.org/abs/2108.12202v2
@Machine_learn
Github: https://github.com/Coopercoppers/PFN
Paper: https://arxiv.org/abs/2108.12202v2
@Machine_learn
ℹ️ LIGAR: Lightweight General-purpose Action Recognition
Github: https://github.com/openvinotoolkit/training_extensions
Paper: https://arxiv.org/abs/2108.13153v1
Models: https://github.com/openvinotoolkit/training_extensions/tree/develop/misc
@Machine_learn
Github: https://github.com/openvinotoolkit/training_extensions
Paper: https://arxiv.org/abs/2108.13153v1
Models: https://github.com/openvinotoolkit/training_extensions/tree/develop/misc
@Machine_learn
Lane Detection With OpenCV (Part 1)
1. Intro
2. Thresholding
3. Perspective Correction
4. Warping
https://dzone.com/articles/lane-detection-with-opencv
@Machine_learn
1. Intro
2. Thresholding
3. Perspective Correction
4. Warping
https://dzone.com/articles/lane-detection-with-opencv
@Machine_learn
Type4Py: Deep Similarity Learning-Based Type Inference for #python
Over the past decade, machine learning (ML) has been applied successfully to a variety of tasks such as computer vision and natural language processing. Motivated by this, in recent years, researchers have employed ML techniques to solve code-related problems, including but not limited to, code completion, code generation, program repair, and type inference.
Dynamic programming languages like Python and TypeScript allows developers to optionally define type annotations and benefit from the advantages of static typing such as better code completion, early bug detection, and etc. However, retrofitting types is a cumbersome and error-prone process. To address this, we propose Type4Py, an ML-based type auto-completion for Python. It assists developers to gradually add type annotations to their codebases.
@Machine_learn
https://github.com/saltudelft/type4py
Announcing post: https://mirblog.net/index.php/2021/07/31/development-and-release-of-type4py-machine-learning-based-type-auto-completion-for-python/
Over the past decade, machine learning (ML) has been applied successfully to a variety of tasks such as computer vision and natural language processing. Motivated by this, in recent years, researchers have employed ML techniques to solve code-related problems, including but not limited to, code completion, code generation, program repair, and type inference.
Dynamic programming languages like Python and TypeScript allows developers to optionally define type annotations and benefit from the advantages of static typing such as better code completion, early bug detection, and etc. However, retrofitting types is a cumbersome and error-prone process. To address this, we propose Type4Py, an ML-based type auto-completion for Python. It assists developers to gradually add type annotations to their codebases.
@Machine_learn
https://github.com/saltudelft/type4py
Announcing post: https://mirblog.net/index.php/2021/07/31/development-and-release-of-type4py-machine-learning-based-type-auto-completion-for-python/