EL-Attention: Memory Efficient Lossless Attention for Generation
Github: https://github.com/microsoft/fastseq
Paper: https://arxiv.org/abs/2105.04779v1
@Machine_learn
Github: https://github.com/microsoft/fastseq
Paper: https://arxiv.org/abs/2105.04779v1
@Machine_learn
GitHub
GitHub - microsoft/fastseq: An efficient implementation of the popular sequence models for text generation, summarization, and…
An efficient implementation of the popular sequence models for text generation, summarization, and translation tasks. https://arxiv.org/pdf/2106.04718.pdf - microsoft/fastseq
Deep Learning Dataset For Passage and Document Retrieval
Github: https://github.com/grill-lab/DL-Hard
Paper: https://arxiv.org/abs/2105.07975v1
@Machine_learn
Github: https://github.com/grill-lab/DL-Hard
Paper: https://arxiv.org/abs/2105.07975v1
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation
Github: https://github.com/happy-jihye/Cartoon-StyleGan2
Paper: https://arxiv.org/abs/2106.12445
Colab: https://colab.research.google.com/github/happy-jihye/Cartoon-StyleGan2/blob/main/Cartoon_StyleGAN2.ipynb
@Machine_learn
Github: https://github.com/happy-jihye/Cartoon-StyleGan2
Paper: https://arxiv.org/abs/2106.12445
Colab: https://colab.research.google.com/github/happy-jihye/Cartoon-StyleGan2/blob/main/Cartoon_StyleGAN2.ipynb
@Machine_learn
🌠 Deepmind's Generally capable agents emerge from open-ended play
Blog : https://deepmind.com/blog/article/generally-capable-agents-emerge-from-open-ended-play
Paper: https://deepmind.com/research/publications/open-ended-learning-leads-to-generally-capable-agents
DeepMind Research: https://github.com/deepmind/deepmind-research
Video: https://www.youtube.com/watch?v=lTmL7jwFfdw&ab_channel=DeepMind
@Machine_learn
Blog : https://deepmind.com/blog/article/generally-capable-agents-emerge-from-open-ended-play
Paper: https://deepmind.com/research/publications/open-ended-learning-leads-to-generally-capable-agents
DeepMind Research: https://github.com/deepmind/deepmind-research
Video: https://www.youtube.com/watch?v=lTmL7jwFfdw&ab_channel=DeepMind
@Machine_learn
A Dataset for Studying Gender Bias in Translation
http://ai.googleblog.com/2021/06/a-dataset-for-studying-gender-bias-in.html
@Machine_learn
http://ai.googleblog.com/2021/06/a-dataset-for-studying-gender-bias-in.html
@Machine_learn
research.google
A Dataset for Studying Gender Bias in Translation
Posted by Romina Stella, Product Manager, Google Translate Advances on neural machine translation (NMT) have enabled more natural and fluid transla...
❤1
10.5445IR1000131732.pdf
74.8 MB
Deep Learning based Vehicle Detection in Aerial Imagery
Sommer, Lars Wilko #2021 #book #DL @Mchine_learn
Sommer, Lars Wilko #2021 #book #DL @Mchine_learn
Ketkar-Moolayil2021_Book_DeepLearningWithPython.pdf
5.2 MB
Deep Learning
with Python
Learn Best Practices of
Deep Learning Models
with PyTorch Ketkar, Nikhil ; Moolayil, Jojo #2021 #DL #Book #PyTorch @Machine_learn
with Python
Learn Best Practices of
Deep Learning Models
with PyTorch Ketkar, Nikhil ; Moolayil, Jojo #2021 #DL #Book #PyTorch @Machine_learn
با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند:
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
Machine learning books and papers pinned «با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند: 1-Deep Learning Basic -01_Introduction --01_How_TensorFlow_Works…»
🥑 DALL·E Mini
Generate images from a text prompt
Demo: https://huggingface.co/spaces/flax-community/dalle-mini
Github: https://github.com/borisdayma/dalle-mini
Paper: https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA
@Machine_learn
Generate images from a text prompt
Demo: https://huggingface.co/spaces/flax-community/dalle-mini
Github: https://github.com/borisdayma/dalle-mini
Paper: https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA
@Machine_learn
Skansi2018_Book_IntroductionToDeepLearning.pdf
2.5 MB
Introduction
to Deep
Learning
From Logical Calculus to Artificial
Intelligence #book #DL #2018 @Machine_learn
to Deep
Learning
From Logical Calculus to Artificial
Intelligence #book #DL #2018 @Machine_learn
9783446468146.pdf
12.7 MB
Machine Learning
für Zeitreihen
Einstieg in Regressions-, ARIMAund
Deep-Learning-Verfahren
mit Python #Book #DL #2021 @Machine_learn
für Zeitreihen
Einstieg in Regressions-, ARIMAund
Deep-Learning-Verfahren
mit Python #Book #DL #2021 @Machine_learn
Tokyo Olympics Alternative medals table
Article on how teams performed with the respect to behavior expected by regression model.
Link: https://ig.ft.com/tokyo-olympics-alternative-medal-table/
@Machine_learn
Article on how teams performed with the respect to behavior expected by regression model.
Link: https://ig.ft.com/tokyo-olympics-alternative-medal-table/
@Machine_learn
Ft
Tokyo Olympics alternative medals table
Which countries are under-performing and over-performing?
Graph Convolutional Neural Networks to Analyze Complex Carbohydrates
A blog post by Daniel Bojar about an application of GNN to analyzing glycan sequences and their proposed GNN architecture called SweetNet. There are other coverages of this work (here and here). The paper is here and the code is here.
@Machine_learn
A blog post by Daniel Bojar about an application of GNN to analyzing glycan sequences and their proposed GNN architecture called SweetNet. There are other coverages of this work (here and here). The paper is here and the code is here.
@Machine_learn
Github:
https://github.com/OlafenwaMoses/DeepStack_ExDark
Documentation:
https://docs.deepstack.cc/index.html#installation
Custom dataset preparation:
https://docs.deepstack.cc/custom-models/datasetprep/index.html
Training custom model:
https://docs.deepstack.cc/custom-models/training/index.html
@Machine_learn
https://github.com/OlafenwaMoses/DeepStack_ExDark
Documentation:
https://docs.deepstack.cc/index.html#installation
Custom dataset preparation:
https://docs.deepstack.cc/custom-models/datasetprep/index.html
Training custom model:
https://docs.deepstack.cc/custom-models/training/index.html
@Machine_learn