Telegram Web Link
Topic : Sudoku solver (SolSudo)

Abstract : SolSudo is a Sudoku solver made using Deep Learning. SolSudo can solve sudokus using images. This has an intelligent solution method. According to this method, the model predicts the blank digits, and when each level is completed, the filled blanks are placed one after another. Each time a digit is filled, new sudoku will be fed to the solver to determine the next digit. Again and again, until there is no blank left. One of the features of this project is detecting sudoku from an image and filling in the blanks. This requires tesseract-ocr, however, which may cause problems. Therefore, I devised a method, in which the Sudoku numbers are entered one by one, and 0 is used for the empty spaces. Below is an example of Sudoku, its detection, and its solution.

Github Link : https://github.com/AryaKoureshi/SolSudo
Linkedin Link : https://www.linkedin.com/posts/arya-koureshi_deeplearning-python-tensorflow-activity-6711641409658716160-kdSD

@Machine_learn
Cicolani2021_Book_BeginningRoboticsWithRaspberry.pdf
7.3 MB
Beginning Robotics with Raspberry Pi and Arduino #2021 #book @Machine_learn
با عرض سلام دوستانی که نیاز به تهیه کتاب های زبان اصلی دارند می توانند با ارسال نام کتاب و ناشر آن به ایدی بنده ثبت سفارش کنند. تمامی کتاب ها با 50% تخفیف دلاری برای تمامی رشته ها قابل دسترس می باشد.
@Raminmousa
Machine learning books and papers pinned «با عرض سلام دوستانی که نیاز به تهیه کتاب های زبان اصلی دارند می توانند با ارسال نام کتاب و ناشر آن به ایدی بنده ثبت سفارش کنند. تمامی کتاب ها با 50% تخفیف دلاری برای تمامی رشته ها قابل دسترس می باشد. @Raminmousa»
Fresh picks from ArXiv
This week on ArXiv: 1000-layer GNN, solutions to OGB challenge, and theory behind GNN explanations 🤔

If I forgot to mention your paper, please shoot me a message and I will update the post.


Deep GNNs
* Training Graph Neural Networks with 1000 Layers ICML 2021
* Very Deep Graph Neural Networks Via Noise Regularisation with Petar Veličković, Peter Battaglia

Heterophily
* Improving Robustness of Graph Neural Networks with Heterophily-Inspired Designs with Danai Koutra

Knowledge graphs
* Query Embedding on Hyper-relational Knowledge Graphs with Mikhail Galkin

OGB-challenge
* Fast Quantum Property Prediction via Deeper 2D and 3D Graph Networks
* First Place Solution of KDD Cup 2021 & OGB Large-Scale Challenge Graph Prediction Track

Theory
* Towards a Rigorous Theoretical Analysis and Evaluation of GNN Explanations with Marinka Zitnik
* A unifying point of view on expressive power of GNNs

GNNs
* Stability of Graph Convolutional Neural Networks to Stochastic Perturbations with Alejandro Ribeiro
* TD-GEN: Graph Generation With Tree Decomposition
* Unsupervised Resource Allocation with Graph Neural Networks
* Equivariance-bridged SO(2)-Invariant Representation Learning using Graph Convolutional Network
* GemNet: Universal Directional Graph Neural Networks for Molecules with Stephan Günnemann
* Optimizing Graph Transformer Networks with Graph-based Techniques

Survey
* Systematic comparison of graph embedding methods in practical tasks
* Evaluating Modules in Graph Contrastive Learning
* A Survey on Mining and Analysis of Uncertain Graphs

@Machine_learn
1
This media is not supported in your browser
VIEW IN TELEGRAM
Amazon, Berkeley release dataset of product images and metadata.
Dataset includes multiple images of 147,702 products, including 360° rotations and 3-D models for thousands of them.


https://www.amazon.science/blog/amazon-berkeley-release-dataset-of-product-images-and-metadata

@Machine_learn
Breast Cancer Wisconsin (Diagnostic) Data Set

Predict whether the cancer is benign or malignant

Here is link of dataset: Link

🔷 Number of instances: 569
🔷 Number of attributes: 32 (ID, diagnosis, 30 real-valued input features)
🔷 Ten real-valued features are computed for each cell nucleus:

a) radius (mean of distances from center to points on the perimeter)
b) texture (standard deviation of gray-scale values)
c) perimeter
d) area
e) smoothness (local variation in radius lengths)
f) compactness (perimeter^2 / area - 1.0)
g) concavity (severity of concave portions of the contour)
h) concave points (number of concave portions of the contour)
i) symmetry
j) fractal dimension ("coastline approximation" - 1)


#dataset
@Machine_learn
R and Python for oceanographers

⬇️ Book

@Machine_learn
Master_Machine_Learning_Algorithms_Discover_how_they_work_by_Jason.pdf
1.1 MB
Jason Brownlee
Master Machine Learning Algorithms Discover How They Work and Implement Them From Scratch
#Ml #book
@Machine_learn
1
2025/07/12 16:37:00
Back to Top
HTML Embed Code: