Немецкие ученые создали модель для осушки водорода в условиях переменного ветра
🇩🇪 Ученые из Института химических технологий общества Фраунгофера в Германии создали модель, которая позволяет точно рассчитывать процесс осушки водорода методом адсорбции в условиях работы морских ветроэлектростанций. Этот инструмент дает возможность проектировать надежные системы получения «зеленого» водорода прямо на шельфе в Северном море. Модель учитывает реальные колебания скорости ветра, которые напрямую влияют на количество производимого водорода, и помогает оптимизировать работу системы очистки. От уровня чистоты водорода в свою очередь зависит, можно ли его безопасно хранить, транспортировать и использовать в промышленности или транспорте.
👉 В своей работе ученые экспериментально измерили, сколько воды может поглотить конкретный тип цеолита (13X BFK) при разных температурах и давлениях, и описали эти данные с помощью уравнения Лэнгмюра-Фрейндлиха, которое хорошо подходит для моделирования процессов адсорбции. Кроме того, исследователи показали, что сам водород практически не удерживается на поверхности цеолита. Для этого они использовали теорию идеальных адсорбционных растворов, которая подтвердила: взаимодействие между водородом и адсорбентом крайне мало, а значит это существенно упрощает модель и дает возможность сосредоточиться исключительно на описании удержания молекул воды.
💨 Результаты моделирования показали, насколько процесс осушки зависит от погодных условий. При средних и высоких скоростях ветра (10 и 16 м/с) адсорбент насыщался водой всего за 18-20 минут, а при слабом ветре (6 м/с) даже через час колонна оставалась незаполненной. Следовательно система управления не может работать по фиксированному расписанию и должна гибко подстраивать циклы работы под текущую погоду. Для этого ученые предлагают оснащать колонны датчиками температуры или влажности, которые будут показывать степень загрузки адсорбента, а также связывать блок очистки с данными о производительности электролизеров, чтобы система автоматически реагировала на изменения потока водорода.
👍 Созданная немецкими исследователями модель теперь позволяет еще на этапе проектирования морских ВЭС проверить работу системы при самых разных сценариях – от резких порывов ветра до полного штиля. С ее помощью можно заранее рассчитать оптимальные размеры адсорбционных колонн, определить необходимость в буферных емкостях для газа или в дополнительных аккумуляторах. В дальнейшем разработку планируют использовать для сравнения эффективности разных способов регенерации адсорбента, а также для испытаний новых материалов, которые могут заменить цеолит в системах осушки.
📰 Материал доступен на сайте «Глобальной энергии»
🇩🇪 Ученые из Института химических технологий общества Фраунгофера в Германии создали модель, которая позволяет точно рассчитывать процесс осушки водорода методом адсорбции в условиях работы морских ветроэлектростанций. Этот инструмент дает возможность проектировать надежные системы получения «зеленого» водорода прямо на шельфе в Северном море. Модель учитывает реальные колебания скорости ветра, которые напрямую влияют на количество производимого водорода, и помогает оптимизировать работу системы очистки. От уровня чистоты водорода в свою очередь зависит, можно ли его безопасно хранить, транспортировать и использовать в промышленности или транспорте.
👉 В своей работе ученые экспериментально измерили, сколько воды может поглотить конкретный тип цеолита (13X BFK) при разных температурах и давлениях, и описали эти данные с помощью уравнения Лэнгмюра-Фрейндлиха, которое хорошо подходит для моделирования процессов адсорбции. Кроме того, исследователи показали, что сам водород практически не удерживается на поверхности цеолита. Для этого они использовали теорию идеальных адсорбционных растворов, которая подтвердила: взаимодействие между водородом и адсорбентом крайне мало, а значит это существенно упрощает модель и дает возможность сосредоточиться исключительно на описании удержания молекул воды.
💨 Результаты моделирования показали, насколько процесс осушки зависит от погодных условий. При средних и высоких скоростях ветра (10 и 16 м/с) адсорбент насыщался водой всего за 18-20 минут, а при слабом ветре (6 м/с) даже через час колонна оставалась незаполненной. Следовательно система управления не может работать по фиксированному расписанию и должна гибко подстраивать циклы работы под текущую погоду. Для этого ученые предлагают оснащать колонны датчиками температуры или влажности, которые будут показывать степень загрузки адсорбента, а также связывать блок очистки с данными о производительности электролизеров, чтобы система автоматически реагировала на изменения потока водорода.
👍 Созданная немецкими исследователями модель теперь позволяет еще на этапе проектирования морских ВЭС проверить работу системы при самых разных сценариях – от резких порывов ветра до полного штиля. С ее помощью можно заранее рассчитать оптимальные размеры адсорбционных колонн, определить необходимость в буферных емкостях для газа или в дополнительных аккумуляторах. В дальнейшем разработку планируют использовать для сравнения эффективности разных способов регенерации адсорбента, а также для испытаний новых материалов, которые могут заменить цеолит в системах осушки.
📰 Материал доступен на сайте «Глобальной энергии»
👍1
Forwarded from Энергия+ | Онлайн-журнал
Исследователи из Пекинского университета создали новый материал, объединив эластичную резину со специальными полимерами. Он способен генерировать электричество за счет разницы температур — например, между телом человека и окружающим воздухом. При этом материал выдерживает деформацию — он растягивается до 850% от первоначальной длины без потери свойств.
«Электрорезину» можно встраивать в одежду для подзарядки смартфона в кармане или использовать в походных условиях. Технология также подходит для создания усовершенствованных медицинских датчиков, умных часов и других гаджетов.
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2❤1
Forwarded from Росконгресс Директ
Участники обсудят:
🔹 трансформацию отношений и баланс интересов на мировых энергетических рынках;
🔹 вопросы диверсификации инвестиций;
🔹 перспективы развития мирового рынка СПГ;
🔹 атомную энергетику и новые принципы мирового рынка углеводородов в контексте расширения БРИКС и многое другое.
Всего в рамках РЭН пройдет более 60 тематических сессий и бизнес-диалогов с участием более чем 100 спикеров.
Подробнее @roscongress
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1🔥1👏1
💡 Генерация из какого вида ВИЭ преобладает в Люксембурге?
Anonymous Quiz
22%
АЭС
28%
ВЭС
25%
ГЭС
25%
СЭС
⚛️ АЭС «Козлодуй» (Kozloduy) — первая и единственная атомная электростанция Болгарии, расположенная на реке Дунай в 5 километрах от города, в честь которого и получила своё название. Предприятие строилось с 1970 по 1974 год
📸 Источники снимков: Nucnet, Westinghouse
📸 Источники снимков: Nucnet, Westinghouse
❤4👍2
Минутка ликбеза
👉 Транспортировка углекислого газа — одна из главных задач современных технологий по снижению углеродных выбросов. Улавливаемый на электростанциях и промышленных предприятиях газ необходимо доставить к месту захоронения или дальнейшего использования, чаще всего в истощенные месторождения. Трубопровод — наиболее эффективный и экономичный способ, но само его строительство требует колоссальных инвестиций и значительного времени. При этом во многих странах, и особенно в Китае, уже существует разветвленная сеть магистральных нефте- и газопроводов, которые можно переоборудовать под транспортировку CO₂.
🤔 Однако просто переключить старые трубы на новую задачу невозможно. Углекислый газ обладает физико-химическими свойствами, сильно отличающимися от нефти и природного газа. При наличии даже небольшого количества воды он вызывает интенсивную коррозию. В случае утечки, будучи тяжелее воздуха, CO₂ накапливается в низинах и создает угрозу удушья для людей и животных. А при резком падении давления газ мгновенно охлаждается до –78 °C, превращаясь в сухой лед и вызывая риск разрушения труб и оборудования.
👉 Транспортировка углекислого газа — одна из главных задач современных технологий по снижению углеродных выбросов. Улавливаемый на электростанциях и промышленных предприятиях газ необходимо доставить к месту захоронения или дальнейшего использования, чаще всего в истощенные месторождения. Трубопровод — наиболее эффективный и экономичный способ, но само его строительство требует колоссальных инвестиций и значительного времени. При этом во многих странах, и особенно в Китае, уже существует разветвленная сеть магистральных нефте- и газопроводов, которые можно переоборудовать под транспортировку CO₂.
🤔 Однако просто переключить старые трубы на новую задачу невозможно. Углекислый газ обладает физико-химическими свойствами, сильно отличающимися от нефти и природного газа. При наличии даже небольшого количества воды он вызывает интенсивную коррозию. В случае утечки, будучи тяжелее воздуха, CO₂ накапливается в низинах и создает угрозу удушья для людей и животных. А при резком падении давления газ мгновенно охлаждается до –78 °C, превращаясь в сухой лед и вызывая риск разрушения труб и оборудования.
Telegram
Глобальная энергия
В Китае предложили переоборудовать нефтегазовые трубы для транспортировки CO₂
🇨🇳 Ученые из Китайского университета нефти (Восточный Китай) и Института науки и технологий PipeChina предложили использовать действующие нефтегазовые трубопроводы для транспортировки…
🇨🇳 Ученые из Китайского университета нефти (Восточный Китай) и Института науки и технологий PipeChina предложили использовать действующие нефтегазовые трубопроводы для транспортировки…
❤2👍1
Как природа хранит углекислый газ: уроки вулкана на Шпицбергене
🤝 Ученые из Тринити-колледжа в Дублине и их итальянские коллеги из Института геонаук и земных ресурсов впервые получили развернутый ответ на вопрос, в каких условиях углекислый газ может превращаться в минералы внутри базальтовых пород. Для этого они исследовали вулкан Сверрефьеллет на Шпицбергене, где тысячи лет назад магматический CO₂ взаимодействовал с талой ледниковой водой, в результате чего внутри породы образовались карбонаты кальция, магния и железа. Именно это естественное хранилище углерода стало лабораторией под открытым небом для изучения того, как с помощью природы можно справляться с избытком углекислого газа.
👉 Ирландские исследователи собрали образцы базальтов из Сверрефьеллета и изучили их с помощью рентгеновской дифракции и электронной микроскопии. Анализы показали, что породы буквально пронизаны прожилками и цементом из карбонатов. Причем образование этих минералов шло по строгой последовательности. Сначала у поверхности базальта образовались богатые кальцием протодоломиты, затем, по мере истощения запасов кальция, в ход пошли магний и железо, формируя магнезит и сидерит. Этот последовательный переход от одного минерала к другому отражает изменение химического состава флюидов по мере их взаимодействия с породой.
👍 Исследователи смогли даже оценить скорости этого процесса. Они измерили толщину карбонатных слоев, которая варьировалась от 40 до 320 микрометров, и сопоставили ее с предполагаемой длительностью циркуляции горячих гидротермальных вод в породах – от нескольких десятков до сотен лет. Расчеты показали, что средние скорости роста кристаллов составляли от 10⁻¹⁴ до 10⁻¹¹ метра в секунду. Чтобы проверить достоверность этих оценок, данные сравнили с лабораторными экспериментами по осаждению магнезита при разных температурах. Совпадение оказалось поразительным: при 100 °C скорость образования минерала возрастала в миллионы раз по сравнению с поверхностными условиями. Выяснилось, что на формирование миллиметрового слоя магнезита при комнатной температуре ушли бы сотни тысяч лет, тогда как в гидротермальной системе Сверрефьеллета этот процесс занимал лишь десятилетия. Это объясняет, почему инженерные проекты, работающие при температурах 25–50 °C, не позволяют добиться образования устойчивых магниевых карбонатов.
🤔 Исследование также показало принципиальные различия в устойчивости минералов. Кальциевые карбонаты оказались наименее надежны: они могут растворяться при изменении кислотности или при поступлении новых порций воды, обедненных кальцием. Совсем иначе ведут себя магнезит и доломит – они практически нерастворимы и способны сохраняться в породах миллионы лет. Именно эти минералы являются ключевыми для долговременной фиксации углекислого газа в недрах. Железистые карбонаты, напротив, оказались нестабильными: при окислении они разрушаются, высвобождая железо и оставляя за собой пустоты. Однако эта особенность имеет и положительный эффект – возникающая вторичная пористость обеспечивает доступ свежих растворов и поддерживает дальнейшее связывание CO₂.
✊ Тем самым исследование ирландских и итальянских геологов впервые показало, что магнезит и доломит, самые ценные минералы для климатической стратегии, образуются естественным образом именно в условиях умеренно горячих гидротермальных систем, при 60-220 °C и в растворах с легкой кислотностью (pH 5-6). Этот результат дает инженерам прямую подсказку: для того, чтобы хранение углекислого газа было эффективным и долговечным, необходимо ориентироваться на геотермально активные зоны либо искусственно воссоздавать аналогичные параметры при закачке CO₂ в недра.
📰 Материал доступен на сайте «Глобальной энергии»
🤝 Ученые из Тринити-колледжа в Дублине и их итальянские коллеги из Института геонаук и земных ресурсов впервые получили развернутый ответ на вопрос, в каких условиях углекислый газ может превращаться в минералы внутри базальтовых пород. Для этого они исследовали вулкан Сверрефьеллет на Шпицбергене, где тысячи лет назад магматический CO₂ взаимодействовал с талой ледниковой водой, в результате чего внутри породы образовались карбонаты кальция, магния и железа. Именно это естественное хранилище углерода стало лабораторией под открытым небом для изучения того, как с помощью природы можно справляться с избытком углекислого газа.
👉 Ирландские исследователи собрали образцы базальтов из Сверрефьеллета и изучили их с помощью рентгеновской дифракции и электронной микроскопии. Анализы показали, что породы буквально пронизаны прожилками и цементом из карбонатов. Причем образование этих минералов шло по строгой последовательности. Сначала у поверхности базальта образовались богатые кальцием протодоломиты, затем, по мере истощения запасов кальция, в ход пошли магний и железо, формируя магнезит и сидерит. Этот последовательный переход от одного минерала к другому отражает изменение химического состава флюидов по мере их взаимодействия с породой.
👍 Исследователи смогли даже оценить скорости этого процесса. Они измерили толщину карбонатных слоев, которая варьировалась от 40 до 320 микрометров, и сопоставили ее с предполагаемой длительностью циркуляции горячих гидротермальных вод в породах – от нескольких десятков до сотен лет. Расчеты показали, что средние скорости роста кристаллов составляли от 10⁻¹⁴ до 10⁻¹¹ метра в секунду. Чтобы проверить достоверность этих оценок, данные сравнили с лабораторными экспериментами по осаждению магнезита при разных температурах. Совпадение оказалось поразительным: при 100 °C скорость образования минерала возрастала в миллионы раз по сравнению с поверхностными условиями. Выяснилось, что на формирование миллиметрового слоя магнезита при комнатной температуре ушли бы сотни тысяч лет, тогда как в гидротермальной системе Сверрефьеллета этот процесс занимал лишь десятилетия. Это объясняет, почему инженерные проекты, работающие при температурах 25–50 °C, не позволяют добиться образования устойчивых магниевых карбонатов.
🤔 Исследование также показало принципиальные различия в устойчивости минералов. Кальциевые карбонаты оказались наименее надежны: они могут растворяться при изменении кислотности или при поступлении новых порций воды, обедненных кальцием. Совсем иначе ведут себя магнезит и доломит – они практически нерастворимы и способны сохраняться в породах миллионы лет. Именно эти минералы являются ключевыми для долговременной фиксации углекислого газа в недрах. Железистые карбонаты, напротив, оказались нестабильными: при окислении они разрушаются, высвобождая железо и оставляя за собой пустоты. Однако эта особенность имеет и положительный эффект – возникающая вторичная пористость обеспечивает доступ свежих растворов и поддерживает дальнейшее связывание CO₂.
✊ Тем самым исследование ирландских и итальянских геологов впервые показало, что магнезит и доломит, самые ценные минералы для климатической стратегии, образуются естественным образом именно в условиях умеренно горячих гидротермальных систем, при 60-220 °C и в растворах с легкой кислотностью (pH 5-6). Этот результат дает инженерам прямую подсказку: для того, чтобы хранение углекислого газа было эффективным и долговечным, необходимо ориентироваться на геотермально активные зоны либо искусственно воссоздавать аналогичные параметры при закачке CO₂ в недра.
📰 Материал доступен на сайте «Глобальной энергии»
👍2
Динамика энергоспроса в США
🇺🇸 Управления энергетической информации США полагает, что потребность в электричестве в Штатах возрастёт с 3900 миллиардов кВт·ч в 2024 году до 5800 кВт·ч в 2050-м. Причём промышленность продолжит оставаться не самым энергоёмким сектором экономики.
👉 Источник
🇺🇸 Управления энергетической информации США полагает, что потребность в электричестве в Штатах возрастёт с 3900 миллиардов кВт·ч в 2024 году до 5800 кВт·ч в 2050-м. Причём промышленность продолжит оставаться не самым энергоёмким сектором экономики.
👉 Источник
💡 На какой реке располагается крупнейшая ГЭС Африки?
Anonymous Quiz
5%
Вольта
54%
Голубой Нил
13%
Замбези
28%
Конго
🌊 ГЭС «Капичира» (Kapichira) — гидроэлектростанция в Малави, одной из наименее электрифицированных стран планеты, на реке Шире. Первая очередь предприятия была запущена в 2000-м, вторая — в 2014-м. В 2022 году тропический шторм «Ана» настолько серьёзно повредил предприятие и его дамбу, что оно было вынуждено на какое-то время остановиться.
📸 Источники снимков: Pietrangeli, Wikipedia, IHA
📸 Источники снимков: Pietrangeli, Wikipedia, IHA
Минутка ликбеза
👉 Современные квантовые компьютеры строятся в основном на сверхпроводящих кубитах. Эти элементы демонстрируют высокую скорость работы и позволяют выполнять сложные операции, недоступные классическим системам. Однако у них есть серьезное ограничение — они плохо удерживают квантовые состояния. Информация быстро «распадается», что мешает использовать такие компьютеры в практических задачах. Именно поэтому исследователи по всему миру ищут надежные варианты «квантовой памяти».
👍 Команда Калифорнийского технологического института предложила необычное решение этой проблемы: преобразовывать электрическую форму квантовой информации в акустическую, то есть в звук.
👉 Современные квантовые компьютеры строятся в основном на сверхпроводящих кубитах. Эти элементы демонстрируют высокую скорость работы и позволяют выполнять сложные операции, недоступные классическим системам. Однако у них есть серьезное ограничение — они плохо удерживают квантовые состояния. Информация быстро «распадается», что мешает использовать такие компьютеры в практических задачах. Именно поэтому исследователи по всему миру ищут надежные варианты «квантовой памяти».
👍 Команда Калифорнийского технологического института предложила необычное решение этой проблемы: преобразовывать электрическую форму квантовой информации в акустическую, то есть в звук.
Telegram
Глобальная энергия
Квантовую информацию научились переводить в звук
🇺🇸 Ученые из Калифорнийского технологического института продемонстрировали новый способ хранения квантовой информации, который позволяет увеличить срок ее жизни в 30 раз по сравнению с традиционными сверхпроводящими…
🇺🇸 Ученые из Калифорнийского технологического института продемонстрировали новый способ хранения квантовой информации, который позволяет увеличить срок ее жизни в 30 раз по сравнению с традиционными сверхпроводящими…
❤1🔥1🤔1
Графен открывает новое квантовое состояние материи
🤝 Ученые из Индийского института наук совместно с коллегами из Национального института материаловедения Японии разработали сверхчистые образцы графена и впервые зафиксировали в них редкое квантовое состояние – жидкость Дирака. Это открытие меняет представление о поведении электронов в необычных условиях и открывает путь к созданию принципиально новых квантовых технологий.
👉 Проведенные измерения показали неожиданную картину: чем выше становилась электропроводность графена, тем ниже оказывалась его теплопроводность, и наоборот. Это полностью противоречило закону Видемана-Франца, который в обычных металлах связывает оба вида проводимости и утверждает, что они должны изменяться согласованно. В случае графена отклонение от этого закона достигло рекордной величины – более чем в 200 раз.
🤔 Анализ показал, что перенос тепла и заряда в графене происходит разными путями, хотя оба процесса подчиняются единым квантовым законам и зависят от фундаментальной константы – кванта проводимости. Наиболее ярко эффект проявился в так называемой «точке Дирака» – особом состоянии, в котором графен перестает быть и металлом, и изолятором. Именно здесь электроны начинают вести себя не как отдельные частицы, а как единая квантовая жидкость с крайне низкой вязкостью. Эта дираковская жидкость течет в сотни раз легче воды и по своим свойствам напоминает кварк-глюонную плазму – экзотическое состояние материи, которое ранее удавалось получить лишь на мощных ускорителях частиц.
💪 Значение открытия трудно переоценить. Для фундаментальной науки графен превращается в удобную настольную лабораторию, где можно изучать явления, связанные с физикой высоких энергий. Есть перспектива и для прикладных областей: дираковская жидкость может лечь в основу квантовых сенсоров нового поколения, способных улавливать сверхслабые электрические и магнитные сигналы. Такие устройства могут найти применение в медицине, где требуется фиксировать малейшие биоэлектрические импульсы, в телекоммуникациях для передачи информации с высокой точностью, а также в вычислительной технике, где все большее значение приобретают квантовые технологии.
📰 Материал доступен на сайте «Глобальной энергии»
🤝 Ученые из Индийского института наук совместно с коллегами из Национального института материаловедения Японии разработали сверхчистые образцы графена и впервые зафиксировали в них редкое квантовое состояние – жидкость Дирака. Это открытие меняет представление о поведении электронов в необычных условиях и открывает путь к созданию принципиально новых квантовых технологий.
👉 Проведенные измерения показали неожиданную картину: чем выше становилась электропроводность графена, тем ниже оказывалась его теплопроводность, и наоборот. Это полностью противоречило закону Видемана-Франца, который в обычных металлах связывает оба вида проводимости и утверждает, что они должны изменяться согласованно. В случае графена отклонение от этого закона достигло рекордной величины – более чем в 200 раз.
🤔 Анализ показал, что перенос тепла и заряда в графене происходит разными путями, хотя оба процесса подчиняются единым квантовым законам и зависят от фундаментальной константы – кванта проводимости. Наиболее ярко эффект проявился в так называемой «точке Дирака» – особом состоянии, в котором графен перестает быть и металлом, и изолятором. Именно здесь электроны начинают вести себя не как отдельные частицы, а как единая квантовая жидкость с крайне низкой вязкостью. Эта дираковская жидкость течет в сотни раз легче воды и по своим свойствам напоминает кварк-глюонную плазму – экзотическое состояние материи, которое ранее удавалось получить лишь на мощных ускорителях частиц.
💪 Значение открытия трудно переоценить. Для фундаментальной науки графен превращается в удобную настольную лабораторию, где можно изучать явления, связанные с физикой высоких энергий. Есть перспектива и для прикладных областей: дираковская жидкость может лечь в основу квантовых сенсоров нового поколения, способных улавливать сверхслабые электрические и магнитные сигналы. Такие устройства могут найти применение в медицине, где требуется фиксировать малейшие биоэлектрические импульсы, в телекоммуникациях для передачи информации с высокой точностью, а также в вычислительной технике, где все большее значение приобретают квантовые технологии.
📰 Материал доступен на сайте «Глобальной энергии»
💯2🤔1🏆1
Forwarded from ЭнергетикУм
This media is not supported in your browser
VIEW IN TELEGRAM
В 60 раз мощнее ветрогенераторов
Бразильская компания TidalWatt, создает новое поколение подводных турбин💥 💥 Их секрет в том, что они используют силу океанских течений — более стабильную и предсказуемую, чем ветер или солнце.
Обычная ветряная установка для выработки 5 мегаватт должна иметь диаметр почти 180 метров🟤 У TidalWatt такой же результат дает компактная подводная турбина всего 3 метра в диаметре. Еще один важный момент — она работает почти постоянно: до 90% времени против 30% у ветряков.
Эти установки не только производят электричество, но и создают новые экосистемы 🐡🐠🐟 Огромные подводные конструкции становятся искусственными рифами, куда возвращается морская жизнь. Разработчики подчеркивают: сами турбины безопасны для океанских обитателей и не нарушают естественный баланс.
По расчетам, одна такая турбина может обеспечить энергией около 22,8 тысяч семей. Если масштабировать технологию, океан действительно превращается в неиссякаемый источник чистой энергии.
#TidalWatt #энергиятечений #ВИЭ #видео
Бразильская компания TidalWatt, создает новое поколение подводных турбин
Обычная ветряная установка для выработки 5 мегаватт должна иметь диаметр почти 180 метров
Эти установки не только производят электричество, но и создают новые экосистемы 🐡🐠🐟 Огромные подводные конструкции становятся искусственными рифами, куда возвращается морская жизнь. Разработчики подчеркивают: сами турбины безопасны для океанских обитателей и не нарушают естественный баланс.
По расчетам, одна такая турбина может обеспечить энергией около 22,8 тысяч семей. Если масштабировать технологию, океан действительно превращается в неиссякаемый источник чистой энергии.
#TidalWatt #энергиятечений #ВИЭ #видео
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5🤔3👏2🏆1
💡 На какой реке находится ГЭС «Липтовска Мара»?
Anonymous Quiz
14%
Ваг
48%
Дунай
30%
Литава
8%
Свинка