Telegram Web Link
Слова классика

- Учёный изучает природу не потому, что это полезно: он изучает её потому, что это доставляет ему удовольствие, потому, что она прекрасна. Если бы природа не была прекрасной, она не стоила бы того труда, который тратится на её познание, и жизнь не стоила бы того труда, чтобы её прожить.

Жюль Анри Пуанкаре
🤔32👍1🔥1💯1
Самые интересные новости телеграм-каналов. Выбор «Глобальной энергии»

Традиционная энергетика
Сырьевая игла: Россия обогнала Австралию, став крупнейшим поставщиком угля в Южную Корею
ИнфоТЭК: Индия импортировала 7,18 млн тонн нефти из России в июле
Энергополе: Объем государственной геологоразведки в России в ближайшие годы будет расти — ГКЗ

Нетрадиционная энергетика
Росатом: В «Росатоме» изготовили уникальное ядерное топливо для быстрых реакторов
GIPRO Проекты энергетики: МАГАТЭ снова повысило прогнозы по развитию атомной энергетики
Высокое напряжение: Больше, чем у ГАЭС: Китай резко нарастил мощность литий-ионных накопителей
Экология | Энергетика | ESG: В Калифорнии запустили первый масштабный проект солнечных панелей над ирригационными каналами мощностью 1,6 МВт за $20 млн

Новые способы применения энергии
Энергия Китая 中国能源: Угольная ТЭС как накопитель электроэнергии в Сучжоу
ЭнергетикУм: Силовая таблетка
Карбоновый полигон: Казахстанские учёные изобрели новый способ улавливания углекислого газа из воздуха —низкотемпературную карбонизацию гидротальцита

Новость «Глобальной энергии»
«Счастливые 13» — документальный фильм президента Ассоциации «Глобальная энергия» Сергея Брилёва — теперь представлен в VK Видео и на Youtube
👍3
В Мексике выяснили, какие спиральные теплообменники выгоднее использовать

🇲🇽 Ученые из Автономного университета Нижней Калифорнии и Автономного университета штата Морелос в Мексике сравнили два типа спиральных теплообменников для геотермальных систем – вертикальный и горизонтальный. Их работа позволила поставить точку в давнем профессиональном споре о том, какая конструкция обеспечивает более высокую эффективность и большую выгоду с точки зрения затрат.

👉 Чтобы понять, какой вариант рациональнее, исследователи построили численные модели обоих теплообменников и проверили их точность на данных реальных экспериментов. В работе использовалось программное обеспечение ANSYS Fluent, а параметры моделирования включали пять вариантов шага спирали – от 5 до 40 сантиметров – и три скорости потока воды – 0,05, 0,1 и 0,15 метра в секунду. Ключевыми критериями оценки стали количество передаваемого тепла и перепад давления, напрямую влияющий на энергозатраты насоса.

💪 Результаты испытаний зафиксировали преимущества вертикальных теплообменников над горизонтальными во всех сценариях. При одинаковых условиях они обеспечивали на 18-19% больше теплопередачи и при этом демонстрировали меньший перепад давления. Это означает, что такие системы не только эффективнее, но и экономичнее в эксплуатации: насосу требуется меньше энергии для прокачки теплоносителя.

🤔 Влияние шага спирали оказалось двойственным. Чем плотнее уложены витки, тем больше поверхность теплообмена и выше отдача тепла. Но вместе с этим резко растет длина трубы и сопротивление потоку, что увеличивает и стоимость установки, и нагрузку на насос. Так, при уменьшении шага с 40 до 5 сантиметров теплопередача возрастала почти вдвое, но давление в системе увеличивалось в 4-5 раз. Оптимальным решением оказался шаг в 10 сантиметров: он обеспечивал высокую эффективность при приемлемых потерях давления и умеренной длине трубопровода.

🌊 Скорость движения воды также влияла на результат. Увеличение ее с 0,05 до 0,15 метра в секунду повышало теплопередачу примерно на 30 %, но при этом заметно возрастали гидравлические потери. Для практического применения это означает, что слишком высокие скорости нецелесообразны: выигрыш в тепле компенсируется дополнительными энергозатратами.

👍 Таким образом, наиболее сбалансированным вариантом признаны спиральные теплообменники с шагом спирали около 10 сантиметров и умеренной скоростью потока воды. Эта работа предоставляет инженерам и проектировщикам необходимые точные данные для принятия решений при создании энергоэффективных геотермальных систем для зданий.

📰 Материал доступен на сайте «Глобальной энергии»
👍2
Forwarded from ЭнергетикУм
Ученые хакнули водород

Водород — один из ключевых игроков в химической промышленности. Его используют для производства топлива, пластмасс, моющих средств, спиртов и даже пищевых стабилизаторов. Но прежде чем применять водород, его нужно «разобрать» на атомы. Обычно для этого требуется разогреть реакторы до сотен градусов и использовать дорогие катализаторы вроде золота или платины. Это энергозатратно, дорого и небезопасно.

Ученые нашли решение. Они разработали метод, который позволяет разделять молекулы водорода при комнатной температуре. Для этого они использовали диоксид титана с наночастицами золота и добавили ультрафиолетовое излучение длиной волны 365 нм. Под воздействием УФ-света электроны перемещаются внутри катализатора, формируя электрон-дырочные пары, которые буквально разрывают связи между атомами водорода.

Результат оказался впечатляющим: ученые смогли восстановить углекислый газ до этана, а затем превратить этан в этилен — важный продукт для производства пластмасс. Все это — без гигантских температур и давления, а только с помощью света. Более того, реакция прекрасно идет и на естественном солнечном излучении.
Если этот метод масштабируют, химическая промышленность может измениться радикально.

Представьте себе заводы, где опасные и дорогие процессы заменены реакциями, которые запускает солнечный свет. Это не просто экономия энергии — это новый взгляд на производство и переработку топлива, пластмасс и других важных материалов.

#водород #топливо #химия #переработка
4🏆4
Чилийские учёные научились измерять потери солнечных панелей по одной фотографии

🇨🇱 Исследователи из Университета Чили, Католического университета Чили и Университета Анд в Сантьяго предложили простой метод оценки потерь мощности солнечных панелей из-за пыли всего по одному их изображению. В отличие от сложных нейросетей и громоздких систем анализа, их подход основан на физических свойствах цвета. Чистая поверхность отражает больше синего, тогда как налет пыли придает ей коричневато-желтый оттенок. Переведя фотографию панели в специальное цветовое пространство и оценив распределение пикселей, исследователи могут с высокой точностью определить, насколько снизилась выработка электроэнергии.

☀️ Чтобы решить проблему загрязнения пылью, исследователи провели эксперименты в трех солнечных парках страны – Lambert, Llanos de Potroso и Lo Miranda. Дополнительно они собрали собственную установку для контролируемого запыления панелей. В специальном закрытом коробе с вентиляторами создавалось облако просеянной пыли, которое равномерно осаждалось на поверхность. Каждый этап сопровождался точными измерениями: уровень солнечной радиации фиксировался прибором с шагом в 1 Вт/м², параллельно регистрировались напряжение и ток модуля, а сама панель фотографировалась камерой с высоким разрешением. Это позволило напрямую сопоставить изменения изображения с фактическими электрическими характеристиками.

📸 Полученные фотографии переводились в систему CIELAB, а панели классифицировались по пяти уровням загрязнения. Исследователи добились того, что для каждого уровня можно было построить регрессионную модель, сопоставляющую изменение цветового оттенка с падением мощности. На собственных данных метод показал впечатляющую точность: ошибка составляла всего 1-3%, что сопоставимо с показателями лабораторных измерений. При переносе алгоритма на другие площадки, где пыль отличалась по составу, точность снижалась, но оставалась в пределах 3-10%. Даже на совершенно других модулях с иным типом загрязнения ошибка не превысила 10%.

👍 Таким образом, новый способ может радикально упростить диагностику состояния солнечных станций. Для калибровки достаточно одного эталонного снимка чистой панели, а последующие проверки можно проводить буквально по фотографии. Это открывает путь к широкому внедрению дронов и мобильных камер для регулярного мониторинга огромных солнечных парков.

👌 Там, где сейчас панели чистят по графику или, что называется, на глаз, появится возможность принимать решения на основе объективных данных, сопоставляя стоимость мойки с реальными потерями генерации. В дальнейшем исследователи планируют дополнить метод учетом температурных факторов и различных типов загрязнений, а также разработать мобильное приложение, которое позволит операторам получать результаты прямо на месте, в режиме реального времени.

📰 Материал доступен на сайте «Глобальной энергии»
🔥3👍1
Минутка ликбеза

👉 Осмотические станции — новое явление в сфере возобновляемой энергетики.
Это первый объект такого типа в Японии и второй в мире: аналогичная промышленная установка была открыта в Дании в 2023 году.

👍 Главное отличие этой технологии от ветровой и солнечной энергетики в том, что источник энергии доступен круглосуточно, независимо от погоды. Осмос — естественный процесс, при котором вода проходит через полупроницаемую мембрану из менее соленого раствора в более соленый, выравнивая концентрацию. Этот поток создает давление, которое можно преобразовать в электричество.

💧На станции в Фукуоке по одну сторону мембраны подается пресная вода (или очищенные сточные воды), а по другую — морская. Вода, стремясь перейти к соленой стороне, повышает давление, и возникающий поток вращает турбину, соединенную с генератором.
👍21
Forwarded from Coala
От угля к атому: в Китае продумают стратегию C2N.

Китайская госкомпания China Energy Engineering Group (CEEC) на днях представила стратегию "Coal to Nuclear" (C2N) – перевод выводимых из эксплуатации угольных станций в атомные.

Идея простая: использовать готовые площадки, ЛЭП и системы охлаждения, чтобы сэкономить время и деньги по сравнению со строительством атомных станций "с нуля". Восточное побережье Китая – самый перспективный для этого регион. Здесь уже высокий спрос на электроэнергию, но при этом остро не хватает земли для строительства новых станций.

Сейчас в Китае работает свыше 1,19 ТВт угольных мощностей, примерно 100 ГВт планируется вывести из эксплуатации к 2030 году. На их месте могут появиться новые реакторы IV поколения: высокотемпературные газоохлаждаемые (HTGR) и даже ториевые на расплавах солей.

Китай и так лидирует в атомной энергетике: в стране 58 действующих реакторов, ещё 33 строятся, а ежегодно запускается до 11 новых проектов. Для сравнения, в Штатах строительство одного блока может растянуться на десятилетия, хотя и там уже давно обсуждают использование бывших угольных площадок.

Главные трудности проекта связаны с деньгами и репутацией атома. Проекты все еще остаются крайне дорогими, даже если использовать угольную инфраструктуру. Для реализации нужны гарантии от государства, а также доверие общества: без уверенности, что проект безопасен, проекты развиваются с трудом.

Эксперты отмечают, что C2N может сработать т.к. он включает в себя все сильные стороны китайской энергетики: масштабное производство оборудования, замкнутую цепочку поставок и способность быстро развертывать проекты.

🪨 Coala
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4
Немецкие ученые создали модель для осушки водорода в условиях переменного ветра

🇩🇪 Ученые из Института химических технологий общества Фраунгофера в Германии создали модель, которая позволяет точно рассчитывать процесс осушки водорода методом адсорбции в условиях работы морских ветроэлектростанций. Этот инструмент дает возможность проектировать надежные системы получения «зеленого» водорода прямо на шельфе в Северном море. Модель учитывает реальные колебания скорости ветра, которые напрямую влияют на количество производимого водорода, и помогает оптимизировать работу системы очистки. От уровня чистоты водорода в свою очередь зависит, можно ли его безопасно хранить, транспортировать и использовать в промышленности или транспорте.

👉 В своей работе ученые экспериментально измерили, сколько воды может поглотить конкретный тип цеолита (13X BFK) при разных температурах и давлениях, и описали эти данные с помощью уравнения Лэнгмюра-Фрейндлиха, которое хорошо подходит для моделирования процессов адсорбции. Кроме того, исследователи показали, что сам водород практически не удерживается на поверхности цеолита. Для этого они использовали теорию идеальных адсорбционных растворов, которая подтвердила: взаимодействие между водородом и адсорбентом крайне мало, а значит это существенно упрощает модель и дает возможность сосредоточиться исключительно на описании удержания молекул воды.

💨 Результаты моделирования показали, насколько процесс осушки зависит от погодных условий. При средних и высоких скоростях ветра (10 и 16 м/с) адсорбент насыщался водой всего за 18-20 минут, а при слабом ветре (6 м/с) даже через час колонна оставалась незаполненной. Следовательно система управления не может работать по фиксированному расписанию и должна гибко подстраивать циклы работы под текущую погоду. Для этого ученые предлагают оснащать колонны датчиками температуры или влажности, которые будут показывать степень загрузки адсорбента, а также связывать блок очистки с данными о производительности электролизеров, чтобы система автоматически реагировала на изменения потока водорода.

👍 Созданная немецкими исследователями модель теперь позволяет еще на этапе проектирования морских ВЭС проверить работу системы при самых разных сценариях – от резких порывов ветра до полного штиля. С ее помощью можно заранее рассчитать оптимальные размеры адсорбционных колонн, определить необходимость в буферных емкостях для газа или в дополнительных аккумуляторах. В дальнейшем разработку планируют использовать для сравнения эффективности разных способов регенерации адсорбента, а также для испытаний новых материалов, которые могут заменить цеолит в системах осушки.

📰 Материал доступен на сайте «Глобальной энергии»
👍1
😶Китайские ученые изобрели «электрорезину» для зарядки гаджетов

Исследователи из Пекинского университета создали новый материал, объединив эластичную резину со специальными полимерами. Он способен генерировать электричество за счет разницы температур — например, между телом человека и окружающим воздухом. При этом материал выдерживает деформацию — он растягивается до 850% от первоначальной длины без потери свойств.

«Электрорезину» можно встраивать в одежду для подзарядки смартфона в кармане или использовать в походных условиях. Технология также подходит для создания усовершенствованных медицинских датчиков, умных часов и других гаджетов.

🟠 Больше из мира энергии и энергетики — в телеграм-канале «Энергия+»
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥21
❗️Опубликована полная деловая программа Российской энергетической недели – 2025.

Участники обсудят:

🔹 трансформацию отношений и баланс интересов на мировых энергетических рынках;
🔹 вопросы диверсификации инвестиций;
🔹 перспективы развития мирового рынка СПГ;
🔹 атомную энергетику и новые принципы мирового рынка углеводородов в контексте расширения БРИКС и многое другое.

Всего в рамках РЭН пройдет более 60 тематических сессий и бизнес-диалогов с участием более чем 100 спикеров.

Подробнее @roscongress
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥1👏1
💡 Генерация из какого вида ВИЭ преобладает в Люксембурге?
Anonymous Quiz
22%
АЭС
28%
ВЭС
25%
ГЭС
25%
СЭС
⚛️ АЭС «Козлодуй» (Kozloduy) — первая и единственная атомная электростанция Болгарии, расположенная на реке Дунай в 5 километрах от города, в честь которого и получила своё название. Предприятие строилось с 1970 по 1974 год

📸 Источники снимков: Nucnet, Westinghouse
4👍2
Минутка ликбеза

👉 Транспортировка углекислого газа — одна из главных задач современных технологий по снижению углеродных выбросов.
Улавливаемый на электростанциях и промышленных предприятиях газ необходимо доставить к месту захоронения или дальнейшего использования, чаще всего в истощенные месторождения. Трубопровод — наиболее эффективный и экономичный способ, но само его строительство требует колоссальных инвестиций и значительного времени. При этом во многих странах, и особенно в Китае, уже существует разветвленная сеть магистральных нефте- и газопроводов, которые можно переоборудовать под транспортировку CO₂.

🤔 Однако просто переключить старые трубы на новую задачу невозможно. Углекислый газ обладает физико-химическими свойствами, сильно отличающимися от нефти и природного газа. При наличии даже небольшого количества воды он вызывает интенсивную коррозию. В случае утечки, будучи тяжелее воздуха, CO₂ накапливается в низинах и создает угрозу удушья для людей и животных. А при резком падении давления газ мгновенно охлаждается до –78 °C, превращаясь в сухой лед и вызывая риск разрушения труб и оборудования.
2👍1
Как природа хранит углекислый газ: уроки вулкана на Шпицбергене

🤝 Ученые из Тринити-колледжа в Дублине и их итальянские коллеги из Института геонаук и земных ресурсов впервые получили развернутый ответ на вопрос, в каких условиях углекислый газ может превращаться в минералы внутри базальтовых пород. Для этого они исследовали вулкан Сверрефьеллет на Шпицбергене, где тысячи лет назад магматический CO₂ взаимодействовал с талой ледниковой водой, в результате чего внутри породы образовались карбонаты кальция, магния и железа. Именно это естественное хранилище углерода стало лабораторией под открытым небом для изучения того, как с помощью природы можно справляться с избытком углекислого газа.

👉 Ирландские исследователи собрали образцы базальтов из Сверрефьеллета и изучили их с помощью рентгеновской дифракции и электронной микроскопии. Анализы показали, что породы буквально пронизаны прожилками и цементом из карбонатов. Причем образование этих минералов шло по строгой последовательности. Сначала у поверхности базальта образовались богатые кальцием протодоломиты, затем, по мере истощения запасов кальция, в ход пошли магний и железо, формируя магнезит и сидерит. Этот последовательный переход от одного минерала к другому отражает изменение химического состава флюидов по мере их взаимодействия с породой.

👍 Исследователи смогли даже оценить скорости этого процесса. Они измерили толщину карбонатных слоев, которая варьировалась от 40 до 320 микрометров, и сопоставили ее с предполагаемой длительностью циркуляции горячих гидротермальных вод в породах – от нескольких десятков до сотен лет. Расчеты показали, что средние скорости роста кристаллов составляли от 10⁻¹⁴ до 10⁻¹¹ метра в секунду. Чтобы проверить достоверность этих оценок, данные сравнили с лабораторными экспериментами по осаждению магнезита при разных температурах. Совпадение оказалось поразительным: при 100 °C скорость образования минерала возрастала в миллионы раз по сравнению с поверхностными условиями. Выяснилось, что на формирование миллиметрового слоя магнезита при комнатной температуре ушли бы сотни тысяч лет, тогда как в гидротермальной системе Сверрефьеллета этот процесс занимал лишь десятилетия. Это объясняет, почему инженерные проекты, работающие при температурах 25–50 °C, не позволяют добиться образования устойчивых магниевых карбонатов.

🤔 Исследование также показало принципиальные различия в устойчивости минералов. Кальциевые карбонаты оказались наименее надежны: они могут растворяться при изменении кислотности или при поступлении новых порций воды, обедненных кальцием. Совсем иначе ведут себя магнезит и доломит – они практически нерастворимы и способны сохраняться в породах миллионы лет. Именно эти минералы являются ключевыми для долговременной фиксации углекислого газа в недрах. Железистые карбонаты, напротив, оказались нестабильными: при окислении они разрушаются, высвобождая железо и оставляя за собой пустоты. Однако эта особенность имеет и положительный эффект – возникающая вторичная пористость обеспечивает доступ свежих растворов и поддерживает дальнейшее связывание CO₂.

Тем самым исследование ирландских и итальянских геологов впервые показало, что магнезит и доломит, самые ценные минералы для климатической стратегии, образуются естественным образом именно в условиях умеренно горячих гидротермальных систем, при 60-220 °C и в растворах с легкой кислотностью (pH 5-6). Этот результат дает инженерам прямую подсказку: для того, чтобы хранение углекислого газа было эффективным и долговечным, необходимо ориентироваться на геотермально активные зоны либо искусственно воссоздавать аналогичные параметры при закачке CO₂ в недра.

📰 Материал доступен на сайте «Глобальной энергии»
👍2
Динамика энергоспроса в США

🇺🇸 Управления энергетической информации США полагает, что потребность в электричестве в Штатах возрастёт с 3900 миллиардов кВт·ч в 2024 году до 5800 кВт·ч в 2050-м. Причём промышленность продолжит оставаться не самым энергоёмким сектором экономики.

👉 Источник
💡 На какой реке располагается крупнейшая ГЭС Африки?
Anonymous Quiz
5%
Вольта
54%
Голубой Нил
13%
Замбези
28%
Конго
2025/09/30 23:14:52
Back to Top
HTML Embed Code: