bootg.com »
United States »
Библиотека собеса по Data Science | вопросы с собеседований » Telegram Web
🧑💻 Статьи для IT: как объяснять и распространять значимые идеи
Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.
Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.
Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.
👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.
Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.
Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.
👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
Как бы вы объяснили отличия глубокого обучения от обычного (машинного обучения)?
Глубокое обучение и машинное обучение — это подвиды методов искусственного интеллекта. Вот какие различия между ними можно назвать:
▪️Структура моделей
В глубоких нейронных сетях используются многослойные архитектуры.
▪️Объём данных
Глубокое обучение требует больших объёмов данных для эффективного обучения.
▪️Аппаратные требования
Из-за сложности нейронных сетей глубокое обучение обычно требует больше вычислительных ресурсов. Хорошо подходят графические процессоры (GPU), способные к параллелизации.
▪️Автоматизация извлечения признаков
В глубоких сетях слои автоматически находят иерархию признаков в данных, что снижает необходимость в ручной обработке данных.
#глубокое_обучение
Глубокое обучение и машинное обучение — это подвиды методов искусственного интеллекта. Вот какие различия между ними можно назвать:
▪️Структура моделей
В глубоких нейронных сетях используются многослойные архитектуры.
▪️Объём данных
Глубокое обучение требует больших объёмов данных для эффективного обучения.
▪️Аппаратные требования
Из-за сложности нейронных сетей глубокое обучение обычно требует больше вычислительных ресурсов. Хорошо подходят графические процессоры (GPU), способные к параллелизации.
▪️Автоматизация извлечения признаков
В глубоких сетях слои автоматически находят иерархию признаков в данных, что снижает необходимость в ручной обработке данных.
#глубокое_обучение
Какой из следующих методов кросс-валидации может не подойти для очень больших наборов данных, содержащих сотни тысяч образцов?
Anonymous Quiz
16%
k-fold кросс-валидация
53%
Кросс-валидация с исключением одного элемента (Leave-one-out)
12%
Hold-out
19%
Все вышеперечисленные
Что вы знаете про обучение с подкреплением (reinforcement learning)?
Суть обучения с подкреплением заключается в том, чтобы смоделировать процесс обучения методом проб и ошибок. Такой алгоритм не использует готовую обучающую выборку. Вместо этого он взаимодействует с окружающей средой (environment), совершая различные действия (actions). За каждое действие алгоритм получает награду (reward) или штраф (penalty) — скалярные значения, которые добавляются к функции вознаграждения (reward function).
Цель алгоритма — научиться действовать так, чтобы максимизировать кумулятивную награду, достигая наилучшего результата в долгосрочной перспективе.
#машинное_обучение
#глубокое обучение
#машинное_обучение
#глубокое обучение
Forwarded from Proglib.academy | IT-курсы
📊 Путеводитель по Big Data для начинающих: методы и техники анализа больших данных
Методы и техники анализа Big Data: Machine Learning, Data mining, краудсорсинг, нейросети, предиктивный и статистический анализ, визуализация, смешение и интеграция данных, имитационные модели. Как разобраться во множестве названий и аббревиатур? Читайте наш путеводитель в статье по ссылке.
🔗 Ссылка
Методы и техники анализа Big Data: Machine Learning, Data mining, краудсорсинг, нейросети, предиктивный и статистический анализ, визуализация, смешение и интеграция данных, имитационные модели. Как разобраться во множестве названий и аббревиатур? Читайте наш путеводитель в статье по ссылке.
Please open Telegram to view this post
VIEW IN TELEGRAM
Какой метод перекрёстной проверки лучше использовать для временных рядов?
Для временных рядов стандартный метод k-fold перекрёстной проверки (кросс-валидации) может быть проблематичным, так как он нарушает порядок последовательности данных, что критично для временной зависимости.
Наиболее подходящий подход для временных рядов — это метод последовательного расширяющегося окна (expanding window) или прямой цепочки. Процедура выглядит так:
1. обучение на данных [1], тестирование на данных [2]
2. обучение на данных [1, 2], тестирование на данных [3]
3. обучение на данных [1, 2, 3], тестирование на данных [4] и т.д.
#машинное_обучение
Для временных рядов стандартный метод k-fold перекрёстной проверки (кросс-валидации) может быть проблематичным, так как он нарушает порядок последовательности данных, что критично для временной зависимости.
Наиболее подходящий подход для временных рядов — это метод последовательного расширяющегося окна (expanding window) или прямой цепочки. Процедура выглядит так:
1. обучение на данных [1], тестирование на данных [2]
2. обучение на данных [1, 2], тестирование на данных [3]
3. обучение на данных [1, 2, 3], тестирование на данных [4] и т.д.
#машинное_обучение
Forwarded from Библиотека data scientist’а | Data Science, Machine learning, анализ данных, машинное обучение
📊 ТОП-10 необходимых для специалиста по Big Data навыков
Рассказываем о необходимом наборе технических и карьерных навыков для специалиста по Big Data.
✍️ Big Data — это термин, используемый для обозначения значительного объема как структурированных, так и неструктурированных данных, который слишком велик для обработки традиционными методами.
👉 Читать все подробности в статье
Рассказываем о необходимом наборе технических и карьерных навыков для специалиста по Big Data.
👉 Читать все подробности в статье
🤖 Напоминаем, что у нас есть еженедельная email-рассылка, посвященная последним новостям и тенденциям в мире искусственного интеллекта.
В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги
👉Подписаться👈
В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги
👉Подписаться👈
Как можно оценить модель, предсказывающую показатель кликабельности (click-through rate, CTR), и в оффлайн, и в режиме реального времени?
▪️Оффлайн-оценка
Для оффлайн-оценки модели предсказания CTR часто используется кросс-энтропия. Она позволяет сравнивать предсказанные значения CTR с фактическими результатами кликов. Обычно модель тестируется на отложенном наборе данных, который не участвовал в обучении.
▪️Оценка в реальном времени
В режиме реального времени кросс-энтропия также может рассчитываться, используя данные онлайн-трафика. Этот подход позволяет следить за производительностью модели «на лету» и быстро выявлять её сильные и слабые стороны.
Проблемы при оценке
🔹Селективное смещение
Онлайн-трафик может быть смещён в сторону высоковероятных кликов, что может исказить оценку модели.
🔹Задержка кликов
Клики не всегда происходят мгновенно после показа объявления. Задержка между показом и кликом может повлиять на расчёты метрик.
🔹Утечка данных
Чтобы избежать искажения результатов, важно обеспечить независимость тестовых данных от обучающих. Утечка тестовых данных в обучающие может привести к завышенной оценке качества модели.
#машинное_обучение
▪️Оффлайн-оценка
Для оффлайн-оценки модели предсказания CTR часто используется кросс-энтропия. Она позволяет сравнивать предсказанные значения CTR с фактическими результатами кликов. Обычно модель тестируется на отложенном наборе данных, который не участвовал в обучении.
▪️Оценка в реальном времени
В режиме реального времени кросс-энтропия также может рассчитываться, используя данные онлайн-трафика. Этот подход позволяет следить за производительностью модели «на лету» и быстро выявлять её сильные и слабые стороны.
Проблемы при оценке
🔹Селективное смещение
Онлайн-трафик может быть смещён в сторону высоковероятных кликов, что может исказить оценку модели.
🔹Задержка кликов
Клики не всегда происходят мгновенно после показа объявления. Задержка между показом и кликом может повлиять на расчёты метрик.
🔹Утечка данных
Чтобы избежать искажения результатов, важно обеспечить независимость тестовых данных от обучающих. Утечка тестовых данных в обучающие может привести к завышенной оценке качества модели.
#машинное_обучение
В каких сценариях используются конфигурации «один к одному», «один ко многим» и «многие ко многим» на входных и выходных слоях рекуррентной нейронной сети?
Рекуррентные нейронные сети (RNN) эффективны для работы с последовательностями. Вот основные сценарии:
▪️Один к одному — редко используется для RNN. Такие задачи, как классификация изображений, не требуют обработки последовательностей, поэтому чаще решаются свёрточными сетями (CNN). Но иногда RNN применяются для классификации фиксированных последовательностей.
▪️Один ко многим — применимо в задачах генерации последовательностей на основе одного входа, например, при преобразовании изображения в текст. CNN извлекает признаки изображения, а RNN генерирует описание на выходе.
▪️Многие ко многим — классический пример RNN. Это может быть перевод текста, где входная последовательность на одном языке преобразуется в выходную на другом.
#глубокое_обучение
Рекуррентные нейронные сети (RNN) эффективны для работы с последовательностями. Вот основные сценарии:
▪️Один к одному — редко используется для RNN. Такие задачи, как классификация изображений, не требуют обработки последовательностей, поэтому чаще решаются свёрточными сетями (CNN). Но иногда RNN применяются для классификации фиксированных последовательностей.
▪️Один ко многим — применимо в задачах генерации последовательностей на основе одного входа, например, при преобразовании изображения в текст. CNN извлекает признаки изображения, а RNN генерирует описание на выходе.
▪️Многие ко многим — классический пример RNN. Это может быть перевод текста, где входная последовательность на одном языке преобразуется в выходную на другом.
#глубокое_обучение
Forwarded from Библиотека питониста | Python, Django, Flask
🪚 Инструменты
🔦 Как развернуть LLM с помощью vLLM и TorchServe
vLLM — один из самых подходящих движков для простого запуска LLM: он предоставляет команду vllm serve для развертывания на одной машине. Однако для развёртывания в продакшене требуются дополнительные продвинутые функции, которых у него нет. Такие возможности есть у TorchServe. Здесь можно прочесть оригинальный гайд по деплою.
А перевод на русский язык мы сделали в нашей рассылке. Подписаться на неё и получать свежие материалы каждую неделю можно по этой ссылке
Please open Telegram to view this post
VIEW IN TELEGRAM
Сравните популярные функции активации с точки зрения вычислительной сложности и поведения градиента.
▪️Сигмоидная функция
Преобразует входные значения в диапазон от 0 до 1, что может представлять вероятность положительного класса. Хотя она полезна для бинарной классификации, функция может страдать от проблемы исчезающих градиентов при крайних значениях входных данных, особенно в глубоких сетях. Вычислительная сложность сигмоидной функции относительно высока, так как она включает экспоненциальные вычисления.
▪️Гиперболический тангенс
Преобразует входные значения в диапазон от -1 до 1. Похожа на сигмоидную функцию, но с выходными значениями, центрированными вокруг нуля, что иногда может улучшить сходимость в нейросетях. Однако, как и сигмоидная функция, она также подвержена проблеме исчезающих градиентов в глубоких сетях. Вычислительная сложность также относительно высока из-за использования экспоненциальных вычислений, аналогично сигмоидной функции.
▪️Функция ReLU
Устанавливает отрицательные входные значения в 0 и сохраняет положительные значения. ReLU является вычислительно эффективной и широко используется, так как помогает избежать проблемы исчезающих градиентов. Вычислительная сложность ReLU низкая, так как она представляет собой простое линейное сравнение с нулем, что делает её предпочтительной для многих задач. Однако ReLU может привести к «умиранию нейронов», если слишком много активаций становятся нулевыми и перестают обучаться.
▪️Функция Leaky ReLU
Модифицирует ReLU, вводя небольшой наклон для отрицательных значений, что помогает смягчить проблему «умирающих нейронов». Leaky ReLU поддерживает более широкий диапазон активации и ненулевой градиент для отрицательных значений, способствуя стабильности модели. Вычислительная сложность Leaky ReLU также низкая, аналогично ReLU, поскольку она требует лишь умножения отрицательных значений на небольшой коэффициент, что незначительно увеличивает нагрузку.
#машинное_обучение
▪️Сигмоидная функция
Преобразует входные значения в диапазон от 0 до 1, что может представлять вероятность положительного класса. Хотя она полезна для бинарной классификации, функция может страдать от проблемы исчезающих градиентов при крайних значениях входных данных, особенно в глубоких сетях. Вычислительная сложность сигмоидной функции относительно высока, так как она включает экспоненциальные вычисления.
▪️Гиперболический тангенс
Преобразует входные значения в диапазон от -1 до 1. Похожа на сигмоидную функцию, но с выходными значениями, центрированными вокруг нуля, что иногда может улучшить сходимость в нейросетях. Однако, как и сигмоидная функция, она также подвержена проблеме исчезающих градиентов в глубоких сетях. Вычислительная сложность также относительно высока из-за использования экспоненциальных вычислений, аналогично сигмоидной функции.
▪️Функция ReLU
Устанавливает отрицательные входные значения в 0 и сохраняет положительные значения. ReLU является вычислительно эффективной и широко используется, так как помогает избежать проблемы исчезающих градиентов. Вычислительная сложность ReLU низкая, так как она представляет собой простое линейное сравнение с нулем, что делает её предпочтительной для многих задач. Однако ReLU может привести к «умиранию нейронов», если слишком много активаций становятся нулевыми и перестают обучаться.
▪️Функция Leaky ReLU
Модифицирует ReLU, вводя небольшой наклон для отрицательных значений, что помогает смягчить проблему «умирающих нейронов». Leaky ReLU поддерживает более широкий диапазон активации и ненулевой градиент для отрицательных значений, способствуя стабильности модели. Вычислительная сложность Leaky ReLU также низкая, аналогично ReLU, поскольку она требует лишь умножения отрицательных значений на небольшой коэффициент, что незначительно увеличивает нагрузку.
#машинное_обучение
Самые полезные каналы для программистов в одной подборке!
Сохраняйте себе, чтобы не потерять 💾
🔥Для всех
Библиотека программиста — новости, статьи, досуг, фундаментальные темы
Книги для программистов
IT-мемы
Proglib Academy — тут мы рассказываем про обучение и курсы
Азбука айтишника — здесь мы познаем азы из мира программирования
🤖Про нейросети
Библиотека робототехники и беспилотников | Роботы, ИИ, интернет вещей
Библиотека нейрозвука | Транскрибация, синтез речи, ИИ-музыка
Библиотека нейротекста | ChatGPT, Gemini, Bing
Библиотека нейровидео | Sora AI, Runway ML, дипфейки
Библиотека нейрокартинок | Midjourney, DALL-E, Stable Diffusion
#️⃣C#
Книги для шарпистов | C#, .NET, F#
Библиотека шарписта — полезные статьи, новости и обучающие материалы по C#
Библиотека задач по C# — код, квизы и тесты
Библиотека собеса по C# — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Вакансии по C#, .NET, Unity Вакансии по PHP, Symfony, Laravel
☁️DevOps
Библиотека devops’а — полезные статьи, новости и обучающие материалы по DevOps
Вакансии по DevOps & SRE
Библиотека задач по DevOps — код, квизы и тесты
Библиотека собеса по DevOps — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
🐘PHP
Библиотека пхпшника — полезные статьи, новости и обучающие материалы по PHP
Вакансии по PHP, Symfony, Laravel
Библиотека PHP для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по PHP — код, квизы и тесты
🐍Python
Библиотека питониста — полезные статьи, новости и обучающие материалы по Python
Вакансии по питону, Django, Flask
Библиотека Python для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Python — код, квизы и тесты
☕Java
Книги для джавистов | Java
Библиотека джависта — полезные статьи по Java, новости и обучающие материалы
Библиотека Java для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Java — код, квизы и тесты
Вакансии для java-разработчиков
👾Data Science
Книги для дата сайентистов | Data Science
Библиотека Data Science — полезные статьи, новости и обучающие материалы по Data Science
Библиотека Data Science для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Data Science — код, квизы и тесты
Вакансии по Data Science, анализу данных, аналитике, искусственному интеллекту
🦫Go
Книги для Go разработчиков
Библиотека Go разработчика — полезные статьи, новости и обучающие материалы по Go
Библиотека Go для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Go — код, квизы и тесты
Вакансии по Go
🧠C++
Книги для C/C++ разработчиков
Библиотека C/C++ разработчика — полезные статьи, новости и обучающие материалы по C++
Библиотека C++ для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по C++ — код, квизы и тесты
Вакансии по C++
💻Другие каналы
Библиотека фронтендера
Библиотека мобильного разработчика
Библиотека хакера
Библиотека тестировщика
Библиотека разработчика игр | Gamedev, Unity, Unreal Engine
Вакансии по фронтенду, джаваскрипт, React, Angular, Vue
Вакансии для мобильных разработчиков
Вакансии по QA тестированию
InfoSec Jobs — вакансии по информационной безопасности
📁Чтобы добавить папку с нашими каналами, нажмите 👉сюда👈
Также у нас есть боты:
Бот с IT-вакансиями
Бот с мероприятиями в сфере IT
Мы в других соцсетях:
🔸VK
🔸YouTube
🔸Дзен
🔸Facebook *
🔸Instagram *
* Организация Meta запрещена на территории РФ
Сохраняйте себе, чтобы не потерять 💾
🔥Для всех
Библиотека программиста — новости, статьи, досуг, фундаментальные темы
Книги для программистов
IT-мемы
Proglib Academy — тут мы рассказываем про обучение и курсы
Азбука айтишника — здесь мы познаем азы из мира программирования
🤖Про нейросети
Библиотека робототехники и беспилотников | Роботы, ИИ, интернет вещей
Библиотека нейрозвука | Транскрибация, синтез речи, ИИ-музыка
Библиотека нейротекста | ChatGPT, Gemini, Bing
Библиотека нейровидео | Sora AI, Runway ML, дипфейки
Библиотека нейрокартинок | Midjourney, DALL-E, Stable Diffusion
#️⃣C#
Книги для шарпистов | C#, .NET, F#
Библиотека шарписта — полезные статьи, новости и обучающие материалы по C#
Библиотека задач по C# — код, квизы и тесты
Библиотека собеса по C# — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Вакансии по C#, .NET, Unity Вакансии по PHP, Symfony, Laravel
☁️DevOps
Библиотека devops’а — полезные статьи, новости и обучающие материалы по DevOps
Вакансии по DevOps & SRE
Библиотека задач по DevOps — код, квизы и тесты
Библиотека собеса по DevOps — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
🐘PHP
Библиотека пхпшника — полезные статьи, новости и обучающие материалы по PHP
Вакансии по PHP, Symfony, Laravel
Библиотека PHP для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по PHP — код, квизы и тесты
🐍Python
Библиотека питониста — полезные статьи, новости и обучающие материалы по Python
Вакансии по питону, Django, Flask
Библиотека Python для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Python — код, квизы и тесты
☕Java
Книги для джавистов | Java
Библиотека джависта — полезные статьи по Java, новости и обучающие материалы
Библиотека Java для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Java — код, квизы и тесты
Вакансии для java-разработчиков
👾Data Science
Книги для дата сайентистов | Data Science
Библиотека Data Science — полезные статьи, новости и обучающие материалы по Data Science
Библиотека Data Science для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Data Science — код, квизы и тесты
Вакансии по Data Science, анализу данных, аналитике, искусственному интеллекту
🦫Go
Книги для Go разработчиков
Библиотека Go разработчика — полезные статьи, новости и обучающие материалы по Go
Библиотека Go для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Go — код, квизы и тесты
Вакансии по Go
🧠C++
Книги для C/C++ разработчиков
Библиотека C/C++ разработчика — полезные статьи, новости и обучающие материалы по C++
Библиотека C++ для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по C++ — код, квизы и тесты
Вакансии по C++
💻Другие каналы
Библиотека фронтендера
Библиотека мобильного разработчика
Библиотека хакера
Библиотека тестировщика
Библиотека разработчика игр | Gamedev, Unity, Unreal Engine
Вакансии по фронтенду, джаваскрипт, React, Angular, Vue
Вакансии для мобильных разработчиков
Вакансии по QA тестированию
InfoSec Jobs — вакансии по информационной безопасности
📁Чтобы добавить папку с нашими каналами, нажмите 👉сюда👈
Также у нас есть боты:
Бот с IT-вакансиями
Бот с мероприятиями в сфере IT
Мы в других соцсетях:
🔸VK
🔸YouTube
🔸Дзен
🔸Facebook *
🔸Instagram *
* Организация Meta запрещена на территории РФ
Начать с вводных занятий можно здесь, ответив всего на 4 вопроса – https://proglib.io/w/22ea91ad
Что будет на демо?
🔹Вводный урок от CPO курса;
🔹Лекции со всеми преподавателями МГУ по темам: теория множеств, непрерывность функции, основные формулы комбинаторики, матрицы и операции над ними, градиентный спуск;
🔹Практические задания и дополнительные материалы!
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Proglib.academy | IT-курсы
👨🎓📊 Как научиться Data Science онлайн: 12 шагов от новичка до профи
12 шагов для тех, кто хочет с нуля построить карьеру в Data Science. Руководство к действию и россыпь ссылок на полезные ресурсы.
Переходите на нашу статью:
🔗 Ссылка
Забирайте курс по Алгоритмам и стать Data Scientst'ом станет еще проще:
🔵 Алгоритмы и структуры данных
12 шагов для тех, кто хочет с нуля построить карьеру в Data Science. Руководство к действию и россыпь ссылок на полезные ресурсы.
Переходите на нашу статью:
🔗 Ссылка
Забирайте курс по Алгоритмам и стать Data Scientst'ом станет еще проще:
Please open Telegram to view this post
VIEW IN TELEGRAM