Telegram Web Link
🤼 Генеративно-состязательная нейросеть: ваша первая GAN-модель на PyTorch

Подробная инструкция построения генеративно-состязательных нейросетей (GAN) на примере двух моделей, реализованных с помощью фреймворка глубокого обучения PyTorch в нашей статье. 👇

🔗 Статья

У нас есть курс как для начинающих программистов, так и для тех, кто уже шарит:
🔵 Алгоритмы и структуры данных
Please open Telegram to view this post
VIEW IN TELEGRAM
Вакансии «Библиотеки программиста» — ждем вас в команде!

Мы постоянно растем и развиваемся, поэтому создали отдельную страницу, на которой будут размещены наши актуальные вакансии. Сейчас мы ищем:
👉контент-менеджеров для ведения телеграм-каналов
👉Переводчик и автор оригинальных статей

Подробности тут

Мы предлагаем частичную занятость и полностью удаленный формат работы — можно совмещать с основной и находиться в любом месте🌴

Ждем ваших откликов 👾
Что такое кросс-энтропия?

Это одна из функций потерь, используемых в машинном обучении. Её ещё называют перекрёстной энтропией или log loss.

Кросс-энтропия измеряет разницу между фактическими метками и предсказанными вероятностями модели. Она широко используется в задачах классификации, особенно в нейронных сетях. Чем больше разница между предсказанной моделью вероятностью и истинным значением, тем выше значение кросс-энтропии.

👆График выше показывает диапазон возможных значений потерь, когда истинная метка равна единице (isDog = 1). По мере приближения предсказанной вероятности к 1 логарифмическая потеря медленно уменьшается. Однако при снижении предсказанной вероятности логарифмическая потеря резко возрастает. Логарифмическая потеря штрафует оба типа ошибок, но особенно те предсказания, которые уверенные, но ошибочные.

#машинное_обучение
🧑‍💻 Статьи для IT: как объяснять и распространять значимые идеи

Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.

Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.

Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.

👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
Какова цель разделения набора данных на обучающую и валидационную выборки?

Основная цель — оставить часть данных, на которых модель не обучалась, чтобы можно было оценить её производительность после обучения. Также иногда валидационный набор данных используется для выбора среди нескольких моделей машинного обучения. Например, сначала мы обучаем несколько алгоритмов, таких как логистическая регрессия, XGBoost и другие, затем тестируем их производительность на валидационных данных и выбираем модель, у которой наименьшая разница между точностью на валидационных и обучающих данных.

#машинное_обучение
Перечислите гиперапараметры, которые можно настроить у классического многослойного перцептрона

▪️Количество скрытых слоёв
Это напрямую влияет на сложность модели. Большее количество слоёв может улучшить способность модели к изучению сложных зависимостей, но это также увеличивает риск переобучения.

▪️Количество нейронов в каждом слое
Чем больше нейронов, тем больше информации может обрабатываться, но это также увеличивает количество параметров, которые необходимо обучить.

▪️Функция активации
Можно использовать, например, ReLU.

▪️Скорость обучения (learning rate)
Один из ключевых гиперпараметров, определяющий, насколько быстро обновляются веса на каждом шаге обучения.

▪️Число эпох (epochs)
Определяет, сколько раз модель пройдёт по всему набору данных во время обучения.

▪️Размер батча (batch size)
Определяет, сколько примеров из обучающего набора данных используется для обновления весов за один раз.

▪️Оптимизатор
Классические MLP могут использовать такие оптимизаторы, как Stochastic Gradient Descent (SGD) или более продвинутые, например, Adam или RMSprop.

#глубокое_обучение
🚀⬆️ Оптимизируй свой AI: разоблачение 6 мифов о работе с векторами в Pgvector

Шесть заблуждений, которые мешают тебе использовать всю мощь векторных баз данных в AI. Развенчав эти мифы, ты сможешь раскрыть истинный потенциал векторов и значительно повысить эффективность твоих AI-проектов.

👉 Читать статью
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Разыгрываем флагманский смартфон

«Библиотека программиста» разыгрывает один из трех смартфонов на выбор:
🔹Samsung Galaxy S24 Ultra на 1 ТБ
🔹Xiaomi 14 Ultra на 512 ГБ
🔹iPhone 16 Pro Max на 512 ГБ

🔥 А еще 99 участников розыгрыша получат скидку 50% на наш курс Базовые модели ML и приложения!
Промокод будет действителен до 20 ноября.

Условия просты:
→ подписаться на Библиотека нейротекста
→ подписаться на Библиотека нейрозвука
→ подписаться на Библиотека нейрокартинок
→ нажать на кнопку «Участвовать» под этим постом

Итоги появятся 30 октября в 20:00 по московскому времени в нашем канале Библиотека программиста. Затем мы свяжемся с победителем, который сам выберет смартфон. Тем, кто получит промокод, мы вышлем его в течение недели после окончания розыгрыша.

⚠️ Убедитесь, что вам можно написать в личные сообщения или следите за результатами — если мы не сможем с вами связаться, то не сможем и отправить приз. Доставить мы можем только в города России и Беларуси.
Как оценивать важность признаков и зачем это делать? Например, для случайного леса

Оценка важности признаков в машинном обучении помогает понять, какие из них больше всего влияют на результат модели. Это полезно, чтобы интерпретировать поведение модели, улучшить её производительность, а также сократить количество признаков, минимизируя вычислительные затраты и предотвращая переобучение.

Вот специфичные для случайного леса методы:

▪️ Оценка количества разбиений по данному признаку.
В процессе построения деревьев случайный лес принимает решения на основе разбиений по различным признакам. Чем чаще признак используется для разбиения, тем более он важен для модели, так как чаще помогает разделять классы или предсказывать значения.

▪️ Суммарный information gain.
Это общая величина уменьшения неоднородности (например, по критерию Джини или энтропии) при разбиениях, основанных на данном признаке. Если признак приводит к большому приросту информации, он считается значимым, так как повышает предсказательную способность модели.

А вот универсальный способ оценки — permutation importance. Этот метод заключается в перемешивании значений одного признака после того, как модель обучена, и последующей оценке влияния этого признака на качество модели. Если, после перемешивания значений, качество модели резко падает, значит, признак был важен. Этот метод хорошо работает для любых моделей, так как он не зависит от внутренней структуры алгоритма.

#машинное_обучение
📊🔧 Администратор Power BI: первичные обязанности после реализации дашборда

Разработали дашборд в Power BI, но не знаете, что делать дальше? Делимся секретами, как правильно опубликовать отчет, настроить доступы через Azure и организовать автоматическое обновление данных.

Читать статью
Мы обучили два ансамбля: случайный лес и бустинг. После этого мы убираем по одному из базовых алгоритмов из каждого ансамбля. Что произойдёт?

Если убрать, например, первое дерево из бустинга, то алгоритм просто сломается. Почему так? Бустинг — это ансамбль, где каждое последующее дерево строится с учётом ошибок предыдущих. Удаление любого из деревьев нарушает всю цепочку, поскольку каждое дерево тесно связано с предыдущими, исправляя их ошибки. В результате ансамбль теряет устойчивость и точность, что может привести к значительным ошибкам в предсказаниях.

А вот случайный лес ведёт себя иначе. Здесь каждое дерево обучается независимо, и их результаты объединяются, чтобы получить финальное предсказание. Поэтому, если мы уберём одно дерево из случайного леса, это не окажет существенного влияния на результат: ансамбль останется работоспособным и, скорее всего, даст предсказания с небольшой потерей точности.

#машинное_обучение
🤖 Напоминаем, что у нас есть еженедельная email-рассылка, посвященная последним новостям и тенденциям в мире искусственного интеллекта.

В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги

👉Подписаться👈
🎃 Приглашаем на вебинар перед Хэллоуином: «Нужна ли математика на собеседованиях🧙‍♀️

Темные тучи сгущаются, и в воздухе витает мистическая атмосфера... Готовы ли вы окунуться в мир загадочной математики и раскрыть тайны успешного собеседования? Тогда ждем вас 28 октября в 20:00! 🕸
https://proglib.io/w/99515be0

Что вас ждет в эту зловещую ночь:

💀 Ошибаться не страшно: узнаем, как неудачные проекты и опыт «в стол» превращают джуниоров в сеньоров. Расскажем истории о том, как ошибки закаляют и помогают достигать вершин мастерства.

🧛 Собеседования без подготовки? Обсудим, возможно ли пройти через испытания рекрутеров без специальной подготовки или это путь в лабиринт с привидениями.

🧙 Теория и практика — зелье успеха:

• Выбор метрики оценки модели: какую метрику показать бизнесу, чтобы не столкнуться с гневом нечисти? Разберемся в разнице между MAPE и WAPE и когда какую применять.

• Трансформация распределений: как превратить логнормальное распределение в нормальное без волшебной палочки? Поговорим о том, зачем это нужно и как обойтись изменением функции потерь вместо магических превращений.

🦇 Бонус для смельчаков: раскроем секреты тестирования в маркетинге, которые помогут не заблудиться в темном лесу конкурентного рынка.

Не упустите шанс провести вечер в компании единомышленников, погрузиться в атмосферу Хэллоуина и получить ценные знания!

🕯 Записывайтесь на вебинар и готовьтесь к мистическим открытиям! https://proglib.io/w/99515be0
2025/02/24 14:25:42
Back to Top
HTML Embed Code: