bootg.com »
United States »
Библиотека собеса по Data Science | вопросы с собеседований » Telegram Web
🤖 Напоминаем, что у нас есть еженедельная email-рассылка, посвященная последним новостям и тенденциям в мире искусственного интеллекта.
В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги
👉Подписаться👈
В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги
👉Подписаться👈
Почему удаление высоко коррелированных признаков считается хорошей практикой?
Удаление высоко коррелированных признаков считается хорошей практикой по нескольким причинам:
▫️Устранение мультиколлинеарности
Когда два или более признаков имеют высокую корреляцию, это может привести к проблеме мультиколлинеарности, особенно в линейных моделях, таких как линейная регрессия и логистическая регрессия. Мультиколлинеарность означает, что признаки не несут дополнительной информации, что приводит к нестабильности коэффициентов модели. Модель может стать чувствительной к малым изменениям в данных, что вызывает большие изменения в оценке параметров.
▫️Снижение размерности
Каждый добавленный признак увеличивает размерность пространства признаков, что усложняет модель. Это может привести к проблеме, известной как «проклятие размерности» (curse of dimensionality). В пространствах высокой размерности расстояния между точками увеличиваются, и данные становятся более разреженными. Это затрудняет обучение модели, так как для правильного обобщения данных требуется больше наблюдений, чтобы покрыть все возможные комбинации признаков. Удаление коррелированных признаков помогает уменьшить размерность и улучшить работу модели.
▫️Улучшение интерпретируемости модели
Когда признаки высоко коррелированы, интерпретировать влияние каждого признака на итоговый результат модели становится сложно. Например, в линейных моделях трудно определить, какой из коррелированных признаков на самом деле влияет на результат, так как они могут взаимозависимо изменять коэффициенты друг друга.
#машинное_обучение
Удаление высоко коррелированных признаков считается хорошей практикой по нескольким причинам:
▫️Устранение мультиколлинеарности
Когда два или более признаков имеют высокую корреляцию, это может привести к проблеме мультиколлинеарности, особенно в линейных моделях, таких как линейная регрессия и логистическая регрессия. Мультиколлинеарность означает, что признаки не несут дополнительной информации, что приводит к нестабильности коэффициентов модели. Модель может стать чувствительной к малым изменениям в данных, что вызывает большие изменения в оценке параметров.
▫️Снижение размерности
Каждый добавленный признак увеличивает размерность пространства признаков, что усложняет модель. Это может привести к проблеме, известной как «проклятие размерности» (curse of dimensionality). В пространствах высокой размерности расстояния между точками увеличиваются, и данные становятся более разреженными. Это затрудняет обучение модели, так как для правильного обобщения данных требуется больше наблюдений, чтобы покрыть все возможные комбинации признаков. Удаление коррелированных признаков помогает уменьшить размерность и улучшить работу модели.
▫️Улучшение интерпретируемости модели
Когда признаки высоко коррелированы, интерпретировать влияние каждого признака на итоговый результат модели становится сложно. Например, в линейных моделях трудно определить, какой из коррелированных признаков на самом деле влияет на результат, так как они могут взаимозависимо изменять коэффициенты друг друга.
#машинное_обучение
Какие методы сэмплирования вы знаете?
Сэмплирование — это способ скорректировать обучающую выборку так, чтобы распределение классов стало сбалансированным.
Вот несколько методов сэмплирования:
▪️Случайное сэмплирование (Random Sampling)
Выборка осуществляется случайным образом без каких-либо условий. Здесь можно выделить два подтипа: сэмлирование с возвращением и без возвращения. В первом случае объекты могут быть выбраны несколько раз, во втором — каждый объект выбирается только один раз.
▪️ Стратифицированное сэмплирование (Stratified Sampling)
При этом методе данные разделяются на группы, и сэмплирование производится из каждой группы пропорционально её размеру.
#машинное_обучение
Сэмплирование — это способ скорректировать обучающую выборку так, чтобы распределение классов стало сбалансированным.
Вот несколько методов сэмплирования:
▪️Случайное сэмплирование (Random Sampling)
Выборка осуществляется случайным образом без каких-либо условий. Здесь можно выделить два подтипа: сэмлирование с возвращением и без возвращения. В первом случае объекты могут быть выбраны несколько раз, во втором — каждый объект выбирается только один раз.
▪️ Стратифицированное сэмплирование (Stratified Sampling)
При этом методе данные разделяются на группы, и сэмплирование производится из каждой группы пропорционально её размеру.
#машинное_обучение
Forwarded from Библиотека питониста | Python, Django, Flask
🎨 Как сделать генератор ASCII-графики на Python
Энтузиасты делают ASCII-ремейки «Звездных войн» и ролевые ASCII-игры. А мы напишем GUI-приложение для конвертации изображений в олдскульную ASCII-графику с помощью Python и библиотеки Pillow.
👉 Читать подробное руководство
Энтузиасты делают ASCII-ремейки «Звездных войн» и ролевые ASCII-игры. А мы напишем GUI-приложение для конвертации изображений в олдскульную ASCII-графику с помощью Python и библиотеки Pillow.
👉 Читать подробное руководство
У Алисы двое детей, по крайней мере один из которых девочка. Какова вероятность того, что оба ребёнка девочки?
Эту задачу можно решить двумя способами.
1️⃣ Через комбинации
Нам нужно рассмотреть все возможные комбинации двух детей Алисы при условии, что хотя бы один из них девочка. Предположим, что вероятность рождения мальчика или девочки равна 50%, и пол одного ребёнка не влияет на пол другого (независимые события).
Возможные комбинации двух детей:
1. Девочка (Д) и Девочка (Д)
2. Девочка (Д) и Мальчик (М)
3. Мальчик (М) и Девочка (Д)
Мы исключаем комбинацию, где оба ребёнка мальчики (М, М), поскольку известно, что хотя бы один ребёнок девочка. Тогда мы делим количество благоприятных исходов (один) на количество возможных исходов (три) и получаем ответ 1/3 (~0.33).
2️⃣ Через теорему Байеса
Пусть A — событие, что оба ребёнка Алисы являются девочками.
Пусть B — событие, что хотя бы один из детей Алисы — девочка.
Нам нужно найти условную вероятность P(A|B).
Шаг 1: Вычисление P(A)
Поскольку каждый ребёнок может быть девочкой (Д) или мальчиком (М) с равной вероятностью 0.5, то мы умножаем 0.5 на 0.5 и получаем 0.25.
Шаг 2: Вычисление P(B|A)
Это вероятность того, что хотя бы один ребёнок девочка при условии, что оба ребёнка девочки. Логичным образом эта вероятность равна единице.
Шаг 3: Вычисление P(B)
Вероятности каждой комбинации детей будут равны 0.25 (см. шаг 1). Тогда мы просто вычтем из единицы вероятность того, что оба ребёнка мальчики, то есть 1 — 0.25 = 0.75.
Шаг 4: Применение теоремы Байеса
Нам нужно P(B|A) умножить на P(A), то есть 1*0.25 = 0.25. Затем это число нужно разделить на P(B), то есть 0.25/0.75. Получаем те же 1/3 (~0.33).
#теория_вероятностей
Эту задачу можно решить двумя способами.
1️⃣ Через комбинации
Нам нужно рассмотреть все возможные комбинации двух детей Алисы при условии, что хотя бы один из них девочка. Предположим, что вероятность рождения мальчика или девочки равна 50%, и пол одного ребёнка не влияет на пол другого (независимые события).
Возможные комбинации двух детей:
1. Девочка (Д) и Девочка (Д)
2. Девочка (Д) и Мальчик (М)
3. Мальчик (М) и Девочка (Д)
Мы исключаем комбинацию, где оба ребёнка мальчики (М, М), поскольку известно, что хотя бы один ребёнок девочка. Тогда мы делим количество благоприятных исходов (один) на количество возможных исходов (три) и получаем ответ 1/3 (~0.33).
2️⃣ Через теорему Байеса
Пусть A — событие, что оба ребёнка Алисы являются девочками.
Пусть B — событие, что хотя бы один из детей Алисы — девочка.
Нам нужно найти условную вероятность P(A|B).
Шаг 1: Вычисление P(A)
Поскольку каждый ребёнок может быть девочкой (Д) или мальчиком (М) с равной вероятностью 0.5, то мы умножаем 0.5 на 0.5 и получаем 0.25.
Шаг 2: Вычисление P(B|A)
Это вероятность того, что хотя бы один ребёнок девочка при условии, что оба ребёнка девочки. Логичным образом эта вероятность равна единице.
Шаг 3: Вычисление P(B)
Вероятности каждой комбинации детей будут равны 0.25 (см. шаг 1). Тогда мы просто вычтем из единицы вероятность того, что оба ребёнка мальчики, то есть 1 — 0.25 = 0.75.
Шаг 4: Применение теоремы Байеса
Нам нужно P(B|A) умножить на P(A), то есть 1*0.25 = 0.25. Затем это число нужно разделить на P(B), то есть 0.25/0.75. Получаем те же 1/3 (~0.33).
#теория_вероятностей
Forwarded from Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
👨💼 Молодая профессия: всё о бизнес-аналитике
Работа бизнес-аналитика высоко оплачивается, имеет массу перспектив и востребована на рынке труда. Специалисты в этой области помогают устранять проблемы на предприятиях, повышают их репутацию и делают конкурентоспособными на рынке.
В статье на Proglib разбираемся, какие задачи выполняет бизнес-аналитик, какие навыки ему необходимы и как этому обучиться.
👉 Читать статью
Работа бизнес-аналитика высоко оплачивается, имеет массу перспектив и востребована на рынке труда. Специалисты в этой области помогают устранять проблемы на предприятиях, повышают их репутацию и делают конкурентоспособными на рынке.
В статье на Proglib разбираемся, какие задачи выполняет бизнес-аналитик, какие навыки ему необходимы и как этому обучиться.
👉 Читать статью
Что такое uplift моделирование?
Если коротко, то это построение модели для поиска сегмента клиентов, на которых коммуникация окажет максимальный эффект. Бизнес-задачу тут можно сформулировать следующим образом: нам нужно, чтобы после коммуникации клиенты выполнили целевое действие, будь то покупка, регистрация или какой-то другой шаг.
В отличие от обычного предсказательного моделирования, uplift моделирование анализирует не просто вероятность совершения действия, а разницу в поведении между двумя группами: тех, кто подвергся воздействию (например, получил рекламное предложение), и тех, кто не подвергся. Это позволяет выделить клиентов, для которых воздействие будет наиболее эффективным — они с наибольшей вероятностью изменят свое поведение благодаря коммуникации.
Пример использования: компания хочет отправить промо-акции. С помощью uplift модели можно выявить тех клиентов, которые не купили бы продукт без акции, но сделают это, если им предложить скидку. Такой подход позволяет существенно повысить эффективность маркетинговых кампаний и снизить затраты на лишние коммуникации.
#данные
Если коротко, то это построение модели для поиска сегмента клиентов, на которых коммуникация окажет максимальный эффект. Бизнес-задачу тут можно сформулировать следующим образом: нам нужно, чтобы после коммуникации клиенты выполнили целевое действие, будь то покупка, регистрация или какой-то другой шаг.
В отличие от обычного предсказательного моделирования, uplift моделирование анализирует не просто вероятность совершения действия, а разницу в поведении между двумя группами: тех, кто подвергся воздействию (например, получил рекламное предложение), и тех, кто не подвергся. Это позволяет выделить клиентов, для которых воздействие будет наиболее эффективным — они с наибольшей вероятностью изменят свое поведение благодаря коммуникации.
Пример использования: компания хочет отправить промо-акции. С помощью uplift модели можно выявить тех клиентов, которые не купили бы продукт без акции, но сделают это, если им предложить скидку. Такой подход позволяет существенно повысить эффективность маркетинговых кампаний и снизить затраты на лишние коммуникации.
#данные
Forwarded from Proglib.academy | IT-курсы
🏢 Как компании превращают данные в деньги: обзор российских практик Data Science
Обсуждаем, куда податься с полученными навыками — как наука о данных используется в российских компаниях. Кейсы коммерческого использования Data Science на территории России в нашей статье: финансы и ритейл, наука и производство, информационные системы и индустрия развлечений.
Хотите приобрести навыки для выполнения этих кейсов, тогда забирайте курсы:
🔵 Математика для Data Science
🔵 Основы программирования на Python
👉Ссылка на статью
Обсуждаем, куда податься с полученными навыками — как наука о данных используется в российских компаниях. Кейсы коммерческого использования Data Science на территории России в нашей статье: финансы и ритейл, наука и производство, информационные системы и индустрия развлечений.
Хотите приобрести навыки для выполнения этих кейсов, тогда забирайте курсы:
👉Ссылка на статью
Please open Telegram to view this post
VIEW IN TELEGRAM
Что такое Backpropagation through time (BPTT)?
BPTT — это метод обучения рекуррентных нейронных сетей (RNN), который использует обратное распространение ошибки для корректировки весов. Для этого сеть разворачивается во времени, представляя последовательные временные шаги как копии нейронки. На каждом шаге вычисляется ошибка, которая затем передаётся назад через временные шаги для обновления весов.
В преимущества BPTT записывают более быстрое обучение по сравнению с другими методами оптимизации. К недостаткам относят сложности с локальными минимумами.
#глубокое_обучение
BPTT — это метод обучения рекуррентных нейронных сетей (RNN), который использует обратное распространение ошибки для корректировки весов. Для этого сеть разворачивается во времени, представляя последовательные временные шаги как копии нейронки. На каждом шаге вычисляется ошибка, которая затем передаётся назад через временные шаги для обновления весов.
В преимущества BPTT записывают более быстрое обучение по сравнению с другими методами оптимизации. К недостаткам относят сложности с локальными минимумами.
#глубокое_обучение
🧑💻 Статьи для IT: как объяснять и распространять значимые идеи
Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.
Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.
Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.
👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.
Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.
Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.
👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
Forwarded from Азбука айтишника
📊 Data Science и Big Data: сходства и различия
В нашей статье разложим по полочкам сходства и различия между специализациями Data Science и Big Data.
🌻 Что внутри?
▪️ Термины
▪️ Применение
▪️ Навыки
▪️ Карьерные перспективы
👉 Ссылка на Статью
В нашей статье разложим по полочкам сходства и различия между специализациями Data Science и Big Data.
▪️ Термины
▪️ Применение
▪️ Навыки
▪️ Карьерные перспективы
Please open Telegram to view this post
VIEW IN TELEGRAM
🧑💻 Какие вопросы задать интервьюеру на собеседовании?
Это полезный репозиторий, в котором собраны советы по «обратному собеседованию».В конце концов, не только вы должны отвечать на вопросы во время интервью.
▪️Что спросить о должностных обязанностях?
▪️Как узнать больше про используемые технологии?
▪️Что выяснить про будущих коллег?
▪️Какие вопросы задать про условия работы?
🔗 Список вопросов находится по этой ссылке
Это полезный репозиторий, в котором собраны советы по «обратному собеседованию».
▪️Что спросить о должностных обязанностях?
▪️Как узнать больше про используемые технологии?
▪️Что выяснить про будущих коллег?
▪️Какие вопросы задать про условия работы?
🔗 Список вопросов находится по этой ссылке
Forwarded from Proglib.academy | IT-курсы
👨💼 Профессия системного аналитика в 2024 году: что нужно знать и где учиться
Освоить эту профессию непросто. Порог входа довольно высок, да и изучить придется немало. Однако, если разработчик не хочет идти в тимлиды или становиться менеджером, системная аналитика — перспективный вариант дальнейшей карьеры.
Рассматриваешь вариант стать системным аналитиком, тогда забирай курс:
🔵 Математика для Data Science
🔗 Статья
Освоить эту профессию непросто. Порог входа довольно высок, да и изучить придется немало. Однако, если разработчик не хочет идти в тимлиды или становиться менеджером, системная аналитика — перспективный вариант дальнейшей карьеры.
Рассматриваешь вариант стать системным аналитиком, тогда забирай курс:
Please open Telegram to view this post
VIEW IN TELEGRAM
🧑💻 Как понять свой уровень квалификации: junior, middle или senior
Это полезная статья от Хабр Карьеры, которая поможет немного разобраться в себе 😌
Эксперты сайта ответили на следующие вопросы:
▪️Какие основные признаки каждого грейда вы бы выделили?
▪️Как определить свой уровень квалификации?
▪️Как понять, что твой грейд вырос?
▪️Какие советы вы дали бы тем, кто переходит из джуна в мидлы и из мидла в сеньоры?
🔗 Читать статью
Это полезная статья от Хабр Карьеры, которая поможет немного разобраться в себе 😌
Эксперты сайта ответили на следующие вопросы:
▪️Какие основные признаки каждого грейда вы бы выделили?
▪️Как определить свой уровень квалификации?
▪️Как понять, что твой грейд вырос?
▪️Какие советы вы дали бы тем, кто переходит из джуна в мидлы и из мидла в сеньоры?
🔗 Читать статью
Forwarded from Библиотека питониста | Python, Django, Flask
This media is not supported in your browser
VIEW IN TELEGRAM
🐍🍽️ Питон съел GIL на завтрак: что нового в версии 3.13
Ты сидишь? Лучше сядь. Они реально сделали это — JIT-компилятор, улучшенная типизация, и, ты не поверишь, GIL наконец-то отправляется на пенсию!
В статье рассказываем обо всех фишках недавно релизнутой версии Python 3.13.
👉 Читать по этой ссылке
Прикреплённый к посту ролик досматриваем до конца👆
Ты сидишь? Лучше сядь. Они реально сделали это — JIT-компилятор, улучшенная типизация, и, ты не поверишь, GIL наконец-то отправляется на пенсию!
В статье рассказываем обо всех фишках недавно релизнутой версии Python 3.13.
👉 Читать по этой ссылке
Что вы знаете про визуальные трансформеры?
Архитектура Transformer была представлена в статье Attention is All You Need. Она отличалась использованием механизма self-attention и очень хорошо показала себя в задачах обработки последовательных данных.
В другой работе An Image is Worth 16x16 Words архитектура была модифицирована для решения задач классификации изображений. Её назвали Vision Transformer (ViT). Идея заключается в том, чтобы разбить изображение на небольшие патчи (например, 16x16 пикселей), которые затем обрабатываются как последовательности токенов, аналогичные словам в тексте. В основе архитектуры лежит тот же механизм self-attention. Однако в отличие от оригинального трансформера, которая включает кодировщик и декодер, ViT использует только кодировщик. Выход кодировщика передаётся в выходной слой, который отвечает за финальное предсказание.
#глубокое_обучение
#глубокое_обучение
🤖 Напоминаем, что у нас есть еженедельная email-рассылка, посвященная последним новостям и тенденциям в мире искусственного интеллекта.
В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги
👉Подписаться👈
В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги
👉Подписаться👈
Спикер: Иван Потапов – Staff Machine Learning Engineer at ShareChat. Руководит командой, отвечающей за качество рекомендаций, и имеет 8-летний опыт в сфере машинного обучения.
– Теорию вероятностей: случайные величины, математическое ожидание и дисперсию.
– Линейную алгебру: векторы, матрицы, собственные векторы и собственные значения.
– Математический анализ: производные и разложение функций в ряд Тейлора.
Понимание математических основ помогает глубже разобраться в работающих под капотом алгоритмах ML/DL и эффективно применять их на практике.
Присоединяйтесь к нам и совершенствуйте свои навыки в машинном обучении!
📌 Регистрация по ссылке: https://proglib.io/w/cf559bfa
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Proglib.academy | IT-курсы
🔀 Чем отличаются системный и бизнес-аналитик? Разбираемся на практике
Дискуссии о том, как разделить определения системного и бизнес-аналитика ведутся в сфере непрерывно. Одни уверены, что это профессия «два в одном», другие — не понимают, какой именно аналитик нужен проекту, и главное — зачем. Раскладываем по полочкам в нашей статье.
👉 Ссылка на статью
Дискуссии о том, как разделить определения системного и бизнес-аналитика ведутся в сфере непрерывно. Одни уверены, что это профессия «два в одном», другие — не понимают, какой именно аналитик нужен проекту, и главное — зачем. Раскладываем по полочкам в нашей статье.
Please open Telegram to view this post
VIEW IN TELEGRAM
Самые полезные каналы для программистов в одной подборке!
Сохраняйте себе, чтобы не потерять 💾
🔥Для всех
Библиотека программиста — новости, статьи, досуг, фундаментальные темы
Книги для программистов
IT-мемы
Proglib Academy — тут мы рассказываем про обучение и курсы
Азбука айтишника — здесь мы познаем азы из мира программирования
🤖Про нейросети
Библиотека робототехники и беспилотников | Роботы, ИИ, интернет вещей
Библиотека нейрозвука | Транскрибация, синтез речи, ИИ-музыка
Библиотека нейротекста | ChatGPT, Gemini, Bing
Библиотека нейровидео | Sora AI, Runway ML, дипфейки
Библиотека нейрокартинок | Midjourney, DALL-E, Stable Diffusion
#️⃣C#
Книги для шарпистов | C#, .NET, F#
Библиотека шарписта — полезные статьи, новости и обучающие материалы по C#
Библиотека задач по C# — код, квизы и тесты
Библиотека собеса по C# — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Вакансии по C#, .NET, Unity Вакансии по PHP, Symfony, Laravel
☁️DevOps
Библиотека devops’а — полезные статьи, новости и обучающие материалы по DevOps
Вакансии по DevOps & SRE
Библиотека задач по DevOps — код, квизы и тесты
Библиотека собеса по DevOps — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
🐘PHP
Библиотека пхпшника — полезные статьи, новости и обучающие материалы по PHP
Вакансии по PHP, Symfony, Laravel
Библиотека PHP для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по PHP — код, квизы и тесты
🐍Python
Библиотека питониста — полезные статьи, новости и обучающие материалы по Python
Вакансии по питону, Django, Flask
Библиотека Python для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Python — код, квизы и тесты
☕Java
Книги для джавистов | Java
Библиотека джависта — полезные статьи по Java, новости и обучающие материалы
Библиотека Java для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Java — код, квизы и тесты
Вакансии для java-разработчиков
👾Data Science
Книги для дата сайентистов | Data Science
Библиотека Data Science — полезные статьи, новости и обучающие материалы по Data Science
Библиотека Data Science для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Data Science — код, квизы и тесты
Вакансии по Data Science, анализу данных, аналитике, искусственному интеллекту
🦫Go
Книги для Go разработчиков
Библиотека Go разработчика — полезные статьи, новости и обучающие материалы по Go
Библиотека Go для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Go — код, квизы и тесты
Вакансии по Go
🧠C++
Книги для C/C++ разработчиков
Библиотека C/C++ разработчика — полезные статьи, новости и обучающие материалы по C++
Библиотека C++ для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по C++ — код, квизы и тесты
Вакансии по C++
💻Другие каналы
Библиотека фронтендера
Библиотека мобильного разработчика
Библиотека хакера
Библиотека тестировщика
Библиотека разработчика игр | Gamedev, Unity, Unreal Engine
Вакансии по фронтенду, джаваскрипт, React, Angular, Vue
Вакансии для мобильных разработчиков
Вакансии по QA тестированию
InfoSec Jobs — вакансии по информационной безопасности
📁Чтобы добавить папку с нашими каналами, нажмите 👉сюда👈
Также у нас есть боты:
Бот с IT-вакансиями
Бот с мероприятиями в сфере IT
Мы в других соцсетях:
🔸VK
🔸YouTube
🔸Дзен
🔸Facebook *
🔸Instagram *
* Организация Meta запрещена на территории РФ
Сохраняйте себе, чтобы не потерять 💾
🔥Для всех
Библиотека программиста — новости, статьи, досуг, фундаментальные темы
Книги для программистов
IT-мемы
Proglib Academy — тут мы рассказываем про обучение и курсы
Азбука айтишника — здесь мы познаем азы из мира программирования
🤖Про нейросети
Библиотека робототехники и беспилотников | Роботы, ИИ, интернет вещей
Библиотека нейрозвука | Транскрибация, синтез речи, ИИ-музыка
Библиотека нейротекста | ChatGPT, Gemini, Bing
Библиотека нейровидео | Sora AI, Runway ML, дипфейки
Библиотека нейрокартинок | Midjourney, DALL-E, Stable Diffusion
#️⃣C#
Книги для шарпистов | C#, .NET, F#
Библиотека шарписта — полезные статьи, новости и обучающие материалы по C#
Библиотека задач по C# — код, квизы и тесты
Библиотека собеса по C# — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Вакансии по C#, .NET, Unity Вакансии по PHP, Symfony, Laravel
☁️DevOps
Библиотека devops’а — полезные статьи, новости и обучающие материалы по DevOps
Вакансии по DevOps & SRE
Библиотека задач по DevOps — код, квизы и тесты
Библиотека собеса по DevOps — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
🐘PHP
Библиотека пхпшника — полезные статьи, новости и обучающие материалы по PHP
Вакансии по PHP, Symfony, Laravel
Библиотека PHP для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по PHP — код, квизы и тесты
🐍Python
Библиотека питониста — полезные статьи, новости и обучающие материалы по Python
Вакансии по питону, Django, Flask
Библиотека Python для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Python — код, квизы и тесты
☕Java
Книги для джавистов | Java
Библиотека джависта — полезные статьи по Java, новости и обучающие материалы
Библиотека Java для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Java — код, квизы и тесты
Вакансии для java-разработчиков
👾Data Science
Книги для дата сайентистов | Data Science
Библиотека Data Science — полезные статьи, новости и обучающие материалы по Data Science
Библиотека Data Science для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Data Science — код, квизы и тесты
Вакансии по Data Science, анализу данных, аналитике, искусственному интеллекту
🦫Go
Книги для Go разработчиков
Библиотека Go разработчика — полезные статьи, новости и обучающие материалы по Go
Библиотека Go для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Go — код, квизы и тесты
Вакансии по Go
🧠C++
Книги для C/C++ разработчиков
Библиотека C/C++ разработчика — полезные статьи, новости и обучающие материалы по C++
Библиотека C++ для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по C++ — код, квизы и тесты
Вакансии по C++
💻Другие каналы
Библиотека фронтендера
Библиотека мобильного разработчика
Библиотека хакера
Библиотека тестировщика
Библиотека разработчика игр | Gamedev, Unity, Unreal Engine
Вакансии по фронтенду, джаваскрипт, React, Angular, Vue
Вакансии для мобильных разработчиков
Вакансии по QA тестированию
InfoSec Jobs — вакансии по информационной безопасности
📁Чтобы добавить папку с нашими каналами, нажмите 👉сюда👈
Также у нас есть боты:
Бот с IT-вакансиями
Бот с мероприятиями в сфере IT
Мы в других соцсетях:
🔸VK
🔸YouTube
🔸Дзен
🔸Facebook *
🔸Instagram *
* Организация Meta запрещена на территории РФ