Telegram Web Link
⚠️ Почему метрика Silhouette Score не всегда подходит для оценки кластеризации с кластерами разного размера

Silhouette Score может не давать точную оценку, если кластеры сильно различаются по размеру или форме. Это связано с тем, что метрика предполагает сферическую форму кластеров и одинаковый размер. В случае сильно несбалансированных кластеров или выбросов, она может давать ложные результаты, указывая на хорошую кластеризацию, когда это не так.

👍 Альтернатива: Для таких случаев лучше использовать Davies-Bouldin Index или Adjusted Rand Index (ARI).
Вакансии «Библиотеки программиста» — ждем вас в команде!

Мы постоянно растем и развиваемся, поэтому создали отдельную страницу, на которой будут размещены наши актуальные вакансии. Сейчас мы ищем:
👉контент-менеджеров для ведения телеграм-каналов

Подробности тут

Мы предлагаем частичную занятость и полностью удаленный формат работы — можно совмещать с основной и находиться в любом месте🌴

Ждем ваших откликов 👾
Вычисление важности признаков: когда она вводит в заблуждение

Вычисление важности признаков (Permutation Feature Importance) — популярный метод оценки вклада признаков в модель. Однако при наличии коррелированных признаков он может давать искаженные результаты.

🔸 Разделение важности: если два признака (A и B) сильно коррелируют, перестановка одного из них не снизит качество модели, так как второй содержит ту же информацию. Итог — заниженная важность.

🔸 Ложная высокая важность: малозначимый, но коррелированный с важным признак может получить высокий вклад просто из-за связи с важным признаком.

Что делать?
Использовать SHAP, который корректно распределяет вклад.
Применять PCA или регуляризацию (Lasso) для снижения корреляции.
Проверять важность через drop-column importance.
Совет на 2025-й — будьте осторожнее с выбором работы.

IT-рынок штормит: массовые сокращения, заморозка найма, снижение зарплат. В такое время особенно важно отличать стоящие офферы от проходных.

Знакомо? Открываешь вакансию, а там: «Ищем middle-разработчика с опытом 10 лет, знанием 15 языков и готовностью работать за печеньки. Офис в Челябинске, релокация за ваш счет» 🤦‍♂️

Чтобы не тратить время на сотни сомнительных предложений, подпишитесь на IT Job Hub. Там мы отфильтровываем весь мусор и публикуем только избранные вакансии в стабильных компаниях:

— Зарплаты на уровне рынка, а не на уровне голодного студента
— Никаких «мы молодая и дружная семья» — только адекватные условия
— Проверенные работодатели, а не стартапы из сомнительных сфер

Вакансии удобно разбиты по тегам: #python #java #go #data #devops и по другим направлениям. Без воды и лишнего спама — только проверенные вакансии в знакомых компаниях.

Подписывайтесь, если не хотите упустить работу мечты → @proglib_jobs
📊 Big Data и Data Science в некоммерческом секторе.

Big Data и Data Science применяются не только в IT-гигантах, но и в некоммерческом секторе, где технологии анализа данных помогают оптимизировать работу организаций, собирать средства и оказывать помощь эффективнее.

➡️ Что внутри статьи:

▪️ Как некоммерческие организации используют Data Science.

▪️ Оптимизация фондов и финансирования с помощью аналитики.

▪️ Роль прогнозных моделей в благотворительности.

▪️ Кейсы Amnesty International, Khan Academy и DataKind.

🔵 Вливайся в мир Big Data вместе с нашим курсом «Базовые модели ML и приложения»

📎 Статья Proglib
Please open Telegram to view this post
VIEW IN TELEGRAM
Градиентный бустинг: почему слишком много деревьев ухудшает модель

🔸 Переобучение (overfitting) — каждое новое дерево минимизирует ошибку, но если деревьев слишком много, модель начинает подстраиваться под шум данных, теряя обобщающую способность.

🔸 Снижение прироста качества — на первых итерациях каждое дерево значительно улучшает предсказания. Однако после определенного количества итераций добавление новых деревьев практически не влияет на качество.

🔸 Рост вычислительной сложности — больше деревьев → выше время инференса и потребление памяти.
👉 Интенсив «Архитектуры и шаблоны проектирования» для middle и senior-разработчиков

Проверьте свои знания, ответив на 8 вопросов – https://proglib.io/w/b72093d4

🧐 Кому подойдет?
Разработчикам, которые знают любой объектно-ориентированный язык программирования и хотят углубиться в архитектурные паттерны.

🎮 Как проходит обучение?
В течение всего интенсива вы будете создавать игру «Звездные войны» и применять ключевые архитектурные паттерны. В процессе изучите:
– Как строить гибкую архитектуру, которая не замедляет разработку
– Как применять IoC-контейнеры и писать модульные тесты
– Как использовать SOLID за пределами ООП
– Как внедрять CI/CD и снижать технический долг

👉 Подробная программа обучения

А по промокоду MIDDLE до 28 февраля вы получите дополнительную скидку на обучение
Please open Telegram to view this post
VIEW IN TELEGRAM
Почему AUC-ROC может вводить в заблуждение при несбалансированных данных

🔸 Не учитывает реальное соотношение классов — AUC-ROC показывает, насколько хорошо модель различает классы, но не отражает точность предсказаний для каждого из них. Если 99% данных — класс 0, модель может почти всегда предсказывать 0 и все равно получить высокий AUC.

🔸 Проблемы с интерпретацией — высокая AUC-ROC не всегда означает, что модель полезна. Например, если интересен именно редкий класс, важно понимать precision, recall и F1-score.
Как улучшить производительность модели с помощью отбора признаков

Отбор признаков (feature selection) — это процесс выбора наиболее значимых признаков для построения модели. Это помогает улучшить её производительность и снизить сложность.

Слишком много признаков может привести к переобучению и увеличению времени обучения.
Неинформативные или шумные признаки могут ухудшить результаты модели.

🔧 Методы отбора признаков:
- Использование методов фильтрации (например, корреляция, тесты на значимость).
- Применение методов обертывания (например, рекурсивный отбор признаков).
- Использование методов вложений (например, Lasso или дерево решений).
2025/02/25 02:33:38
Back to Top
HTML Embed Code: