bootg.com »
United States »
Библиотека собеса по Data Science | вопросы с собеседований » Telegram Web
Почему модель, обученная с L1-регуляризацией, может приводить к более интерпретируемым результатам по сравнению с L2-регуляризацией?
🔹 L1-регуляризация (Lasso) добавляет к функции потерь сумму модулей весов, что способствует обнулению некоторых из них. Это приводит к разреженности модели — многие параметры становятся нулевыми, оставляя только значимые признаки. В результате модель становится проще и легче интерпретируется.
🔹 L2-регуляризация (Ridge) добавляет сумму квадратов весов, но не зануляет их, а только уменьшает. Это делает модель более устойчивой к шуму, но не позволяет выявить наименее значимые признаки.
📌 L1-регуляризация действует как механизм автоматического отбора признаков, что упрощает интерпретацию модели. L2, в свою очередь, помогает сглаживать веса, но не делает модель разреженной.
🔹 L1-регуляризация (Lasso) добавляет к функции потерь сумму модулей весов, что способствует обнулению некоторых из них. Это приводит к разреженности модели — многие параметры становятся нулевыми, оставляя только значимые признаки. В результате модель становится проще и легче интерпретируется.
🔹 L2-регуляризация (Ridge) добавляет сумму квадратов весов, но не зануляет их, а только уменьшает. Это делает модель более устойчивой к шуму, но не позволяет выявить наименее значимые признаки.
📌 L1-регуляризация действует как механизм автоматического отбора признаков, что упрощает интерпретацию модели. L2, в свою очередь, помогает сглаживать веса, но не делает модель разреженной.
Почему глубокие нейросети могут переобучаться, даже если количество данных огромное
🔹 Избыточная параметризация — современные нейросети содержат миллионы (или даже миллиарды) параметров, что позволяет им запоминать данные вместо обобщения.
🔹 Коррелированные признаки — если данные содержат мало информативных или избыточных признаков, модель может подстроиться под шум, а не выделить полезные закономерности.
🔹 Смещение в данных — если тренировочные данные недостаточно разнообразны или не представляют реальный мир, сеть может слишком хорошо подстроиться под них, но плохо работать на новых примерах.
🔹 Отсутствие регуляризации — методы вроде L1/L2-регуляризации, dropout и batch normalization помогают бороться с переобучением, но если они не используются, сеть может переобучиться даже на больших данных.
🔹 Избыточная параметризация — современные нейросети содержат миллионы (или даже миллиарды) параметров, что позволяет им запоминать данные вместо обобщения.
🔹 Коррелированные признаки — если данные содержат мало информативных или избыточных признаков, модель может подстроиться под шум, а не выделить полезные закономерности.
🔹 Смещение в данных — если тренировочные данные недостаточно разнообразны или не представляют реальный мир, сеть может слишком хорошо подстроиться под них, но плохо работать на новых примерах.
🔹 Отсутствие регуляризации — методы вроде L1/L2-регуляризации, dropout и batch normalization помогают бороться с переобучением, но если они не используются, сеть может переобучиться даже на больших данных.
Какая функция потерь используется в процессе обучения сети на изображении
В процессе обучения используется комбинированная функция потерь, которая представляет собой взвешенное среднее из:
🔹 Style loss (потеря стиля) — оценивает, насколько хорошо сгенерированное изображение соответствует стилю эталонного изображения.
🔹 Content loss (потеря содержимого) — следит за тем, чтобы сгенерированное изображение сохраняло ключевые структуры оригинального контента.
В процессе обучения используется комбинированная функция потерь, которая представляет собой взвешенное среднее из:
🔹 Style loss (потеря стиля) — оценивает, насколько хорошо сгенерированное изображение соответствует стилю эталонного изображения.
🔹 Content loss (потеря содержимого) — следит за тем, чтобы сгенерированное изображение сохраняло ключевые структуры оригинального контента.
Forwarded from Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
🐳 DeepSeek-R1 — очередной значительный шаг в развитии ИИ. Для сообщества ML-разработчиков и исследователей этот релиз важен по двум причинам:
👉 Это модель с открытыми весами, имеющая уменьшенные, дистиллированные версии.
👉 Она использует и анализирует метод обучения, который позволяет воспроизвести модель рассуждений, подобную OpenAI o1.
Разберемся, как происходило обучение DeepSeek-R1: https://proglib.io/sh/SwVUWXrFN3
👉 Это модель с открытыми весами, имеющая уменьшенные, дистиллированные версии.
👉 Она использует и анализирует метод обучения, который позволяет воспроизвести модель рассуждений, подобную OpenAI o1.
Разберемся, как происходило обучение DeepSeek-R1: https://proglib.io/sh/SwVUWXrFN3
Как классическая классификация ML помогает в реальном мире
🤖 Классификация в ML — это метод обучения, в котором модель обучается на размеченных данных и предсказывает, к какому классу относится новый объект.
✅ Фильтрация спама – чтобы в почте оставалось только важное.
✅ Рекомендации фильмов – Netflix знает, что ты любишь!
✅ Кредитный скоринг – банки решают, дать ли тебе займ.
✅ Предсказание мэтчей – как на нашем вебинаре по speed dating.
14 февраля мы разберём на практике задачу классификации:
- Как выбрать оптимальные признаки
- Что делать с несбалансированными данными
- Как интерпретировать результаты модели
🔥 Если уже работаешь с ML или только начинающий программист – приходи на наш вебинар, в котором мы разберем «как предсказывать мэтч на speed dating» .
Приходи!
🤖 Классификация в ML — это метод обучения, в котором модель обучается на размеченных данных и предсказывает, к какому классу относится новый объект.
✅ Фильтрация спама – чтобы в почте оставалось только важное.
✅ Рекомендации фильмов – Netflix знает, что ты любишь!
✅ Кредитный скоринг – банки решают, дать ли тебе займ.
✅ Предсказание мэтчей – как на нашем вебинаре по speed dating.
14 февраля мы разберём на практике задачу классификации:
- Как выбрать оптимальные признаки
- Что делать с несбалансированными данными
- Как интерпретировать результаты модели
🔥 Если уже работаешь с ML или только начинающий программист – приходи на наш вебинар, в котором мы разберем «как предсказывать мэтч на speed dating» .
Приходи!
Правда или Ложь: высокий информационный выигрыш при разбиении ухудшает точность модели (дерева решений)?
Ответ:✅ Правда. Хотя высокий информационный выигрыш означает значительное уменьшение неопределенности, он также может привести к переобучению. В этом случае дерево слишком точно подстраивается под обучающую выборку, теряя способность обобщать закономерности на новых данных.
Ответ:
Почему в глубоких нейросетях используют функции активации, такие как ReLU, вместо линейных
Если в каждой нейронной связи использовать только линейные преобразования, вся сеть сводится к одной линейной функции, независимо от количества слоев. Это делает нейросеть неспособной моделировать сложные нелинейные зависимости.
🔹 ReLU (Rectified Linear Unit) и другие нелинейные функции помогают сети изучать сложные представления и разделять данные в многомерном пространстве.
Если в каждой нейронной связи использовать только линейные преобразования, вся сеть сводится к одной линейной функции, независимо от количества слоев. Это делает нейросеть неспособной моделировать сложные нелинейные зависимости.
🔹 ReLU (Rectified Linear Unit) и другие нелинейные функции помогают сети изучать сложные представления и разделять данные в многомерном пространстве.
Каковы преимущества и ограничения метода SVM с использованием нелинейных ядер
В отличие от линейного SVM, использование ядра позволяет проекцировать данные в пространство более высокой размерности, где они могут стать линейно разделимыми.
Преимущества:
✅ Обработка нелинейных данных: ядра позволяют эффективно решать задачи, где данные не могут быть разделены линейно.
✅ Гибкость: разнообразие ядер делает SVM универсальным инструментом для различных типов задач.
Ограничения:
🚫 Выбор ядра и параметров: требует тщательной настройки, что может быть трудоемким процессом.
🚫 Вычислительные затраты: для большИх данных SVM с ядром может быть медленным и требовать бОльших вычислительных ресурсов.
В отличие от линейного SVM, использование ядра позволяет проекцировать данные в пространство более высокой размерности, где они могут стать линейно разделимыми.
Преимущества:
✅ Обработка нелинейных данных: ядра позволяют эффективно решать задачи, где данные не могут быть разделены линейно.
✅ Гибкость: разнообразие ядер делает SVM универсальным инструментом для различных типов задач.
Ограничения:
🚫 Выбор ядра и параметров: требует тщательной настройки, что может быть трудоемким процессом.
🚫 Вычислительные затраты: для большИх данных SVM с ядром может быть медленным и требовать бОльших вычислительных ресурсов.
Почему уменьшение ошибки на обучающей выборке не всегда приводит к лучшей обобщающей способности модели
✅ Это может быть признаком переобучения. Когда модель слишком хорошо подстраивается под обучающие данные, она начинает запоминать их, а не учиться выделять общие закономерности. В результате на тестовой выборке её точность падает.
🔍 Как избежать? Используйте регуляризацию (L1/L2), кросс-валидацию, добавляйте больше данных или применяйте техники увеличения данных (data augmentation).
✅ Это может быть признаком переобучения. Когда модель слишком хорошо подстраивается под обучающие данные, она начинает запоминать их, а не учиться выделять общие закономерности. В результате на тестовой выборке её точность падает.
🔍 Как избежать? Используйте регуляризацию (L1/L2), кросс-валидацию, добавляйте больше данных или применяйте техники увеличения данных (data augmentation).
Как изменить предобученную нейросеть с классификации на регрессию
✅ Ответ: используем transfer learning — перенос знаний с одной задачи на другую.
Что делаем?
🔹 Заменяем последний полносвязный слой и Softmax (отвечающий за классификацию) на один нейрон (или новый полносвязный слой) для регрессии.
🔹 Опционально замораживаем первые слои, если данных мало или нужна быстрая сходимость.
🔹 Обучаем сеть на новых данных с функцией потерь для регрессии.
Таким образом, мы сохраняем мощные фичи первых слоев, обученные на огромных датасетах, но адаптируем выход под задачу регрессии.
✅ Ответ: используем transfer learning — перенос знаний с одной задачи на другую.
Что делаем?
🔹 Заменяем последний полносвязный слой и Softmax (отвечающий за классификацию) на один нейрон (или новый полносвязный слой) для регрессии.
🔹 Опционально замораживаем первые слои, если данных мало или нужна быстрая сходимость.
🔹 Обучаем сеть на новых данных с функцией потерь для регрессии.
Таким образом, мы сохраняем мощные фичи первых слоев, обученные на огромных датасетах, но адаптируем выход под задачу регрессии.
Forwarded from Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
🐳 Делаем конкурента DeepSeek R1-Zero на домашней пекарне: метод GRPO в Unsloth
Обычно LLM требуют мощных GPU, но теперь даже на видеокарте с ограниченной памятью можно обучать модели логического рассуждения.
💡 Фишка — новый алгоритм GRPO, который позволяет моделям развивать логическое мышление без вмешательства человека.
Подробнее в нашей статье: https://proglib.io/sh/MyBCbq9is5
Обычно LLM требуют мощных GPU, но теперь даже на видеокарте с ограниченной памятью можно обучать модели логического рассуждения.
💡 Фишка — новый алгоритм GRPO, который позволяет моделям развивать логическое мышление без вмешательства человека.
Подробнее в нашей статье: https://proglib.io/sh/MyBCbq9is5
Можно ли использовать CNN для классификации 1D-сигнала
✅ Да, но есть нюансы.
Для временных рядов чаще применяют рекуррентные сети (RNN), так как они учитывают последовательность данных. Однако сверточные сети (CNN) тоже могут быть полезны, особенно если важны повторяющиеся шаблоны в сигнале.
🔹 CNN — хорошо распознают локальные закономерности через скользящие окна.
🔹 RNN — учитывают временную зависимость между значениями.
🔹 QRNN — гибридный подход, объединяющий преимущества CNN и RNN.
Выбор зависит от задачи и структуры данных!
✅ Да, но есть нюансы.
Для временных рядов чаще применяют рекуррентные сети (RNN), так как они учитывают последовательность данных. Однако сверточные сети (CNN) тоже могут быть полезны, особенно если важны повторяющиеся шаблоны в сигнале.
🔹 CNN — хорошо распознают локальные закономерности через скользящие окна.
🔹 RNN — учитывают временную зависимость между значениями.
🔹 QRNN — гибридный подход, объединяющий преимущества CNN и RNN.
Выбор зависит от задачи и структуры данных!
Правда или ложь: градиентный спуск гарантированно найдёт локальный минимум, если шаг обучения уменьшается правильно, а минимум конечен.
💡 Ответ:правда
Но есть нюанс: градиентный спуск не гарантирует нахождение глобального минимума. В сложных функциях он может застрять в локальных минимумах или седловых точках.
💡 Ответ:
Самые полезные каналы для программистов в одной подборке!
Сохраняйте себе, чтобы не потерять 💾
🔥Для всех
Библиотека программиста — новости, статьи, досуг, фундаментальные темы
Книги для программистов
IT-мемы
Proglib Academy — тут мы рассказываем про обучение и курсы
Азбука айтишника — здесь мы познаем азы из мира программирования
🤖Про нейросети
Библиотека робототехники и беспилотников | Роботы, ИИ, интернет вещей
Библиотека нейрозвука | Транскрибация, синтез речи, ИИ-музыка
Библиотека нейротекста | ChatGPT, Gemini, Bing
Библиотека нейровидео | Sora AI, Runway ML, дипфейки
Библиотека нейрокартинок | Midjourney, DALL-E, Stable Diffusion
#️⃣C#
Книги для шарпистов | C#, .NET, F#
Библиотека шарписта — полезные статьи, новости и обучающие материалы по C#
Библиотека задач по C# — код, квизы и тесты
Библиотека собеса по C# — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Вакансии по C#, .NET, Unity Вакансии по PHP, Symfony, Laravel
☁️DevOps
Библиотека devops’а — полезные статьи, новости и обучающие материалы по DevOps
Вакансии по DevOps & SRE
Библиотека задач по DevOps — код, квизы и тесты
Библиотека собеса по DevOps — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
🐘PHP
Библиотека пхпшника — полезные статьи, новости и обучающие материалы по PHP
Вакансии по PHP, Symfony, Laravel
Библиотека PHP для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по PHP — код, квизы и тесты
🐍Python
Библиотека питониста — полезные статьи, новости и обучающие материалы по Python
Вакансии по питону, Django, Flask
Библиотека Python для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Python — код, квизы и тесты
☕Java
Книги для джавистов | Java
Библиотека джависта — полезные статьи по Java, новости и обучающие материалы
Библиотека Java для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Java — код, квизы и тесты
Вакансии для java-разработчиков
👾Data Science
Книги для дата сайентистов | Data Science
Библиотека Data Science — полезные статьи, новости и обучающие материалы по Data Science
Библиотека Data Science для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Data Science — код, квизы и тесты
Вакансии по Data Science, анализу данных, аналитике, искусственному интеллекту
🦫Go
Книги для Go разработчиков
Библиотека Go разработчика — полезные статьи, новости и обучающие материалы по Go
Библиотека Go для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Go — код, квизы и тесты
Вакансии по Go
🧠C++
Книги для C/C++ разработчиков
Библиотека C/C++ разработчика — полезные статьи, новости и обучающие материалы по C++
Библиотека C++ для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по C++ — код, квизы и тесты
Вакансии по C++
💻Другие каналы
Библиотека фронтендера
Библиотека мобильного разработчика
Библиотека хакера
Библиотека тестировщика
Библиотека разработчика игр | Gamedev, Unity, Unreal Engine
Вакансии по фронтенду, джаваскрипт, React, Angular, Vue
Вакансии для мобильных разработчиков
Вакансии по QA тестированию
InfoSec Jobs — вакансии по информационной безопасности
📁Чтобы добавить папку с нашими каналами, нажмите 👉сюда👈
Также у нас есть боты:
Бот с IT-вакансиями
Бот с мероприятиями в сфере IT
Мы в других соцсетях:
🔸VK
🔸YouTube
🔸Дзен
🔸Facebook *
🔸Instagram *
* Организация Meta запрещена на территории РФ
Сохраняйте себе, чтобы не потерять 💾
🔥Для всех
Библиотека программиста — новости, статьи, досуг, фундаментальные темы
Книги для программистов
IT-мемы
Proglib Academy — тут мы рассказываем про обучение и курсы
Азбука айтишника — здесь мы познаем азы из мира программирования
🤖Про нейросети
Библиотека робототехники и беспилотников | Роботы, ИИ, интернет вещей
Библиотека нейрозвука | Транскрибация, синтез речи, ИИ-музыка
Библиотека нейротекста | ChatGPT, Gemini, Bing
Библиотека нейровидео | Sora AI, Runway ML, дипфейки
Библиотека нейрокартинок | Midjourney, DALL-E, Stable Diffusion
#️⃣C#
Книги для шарпистов | C#, .NET, F#
Библиотека шарписта — полезные статьи, новости и обучающие материалы по C#
Библиотека задач по C# — код, квизы и тесты
Библиотека собеса по C# — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Вакансии по C#, .NET, Unity Вакансии по PHP, Symfony, Laravel
☁️DevOps
Библиотека devops’а — полезные статьи, новости и обучающие материалы по DevOps
Вакансии по DevOps & SRE
Библиотека задач по DevOps — код, квизы и тесты
Библиотека собеса по DevOps — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
🐘PHP
Библиотека пхпшника — полезные статьи, новости и обучающие материалы по PHP
Вакансии по PHP, Symfony, Laravel
Библиотека PHP для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по PHP — код, квизы и тесты
🐍Python
Библиотека питониста — полезные статьи, новости и обучающие материалы по Python
Вакансии по питону, Django, Flask
Библиотека Python для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Python — код, квизы и тесты
☕Java
Книги для джавистов | Java
Библиотека джависта — полезные статьи по Java, новости и обучающие материалы
Библиотека Java для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Java — код, квизы и тесты
Вакансии для java-разработчиков
👾Data Science
Книги для дата сайентистов | Data Science
Библиотека Data Science — полезные статьи, новости и обучающие материалы по Data Science
Библиотека Data Science для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Data Science — код, квизы и тесты
Вакансии по Data Science, анализу данных, аналитике, искусственному интеллекту
🦫Go
Книги для Go разработчиков
Библиотека Go разработчика — полезные статьи, новости и обучающие материалы по Go
Библиотека Go для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Go — код, квизы и тесты
Вакансии по Go
🧠C++
Книги для C/C++ разработчиков
Библиотека C/C++ разработчика — полезные статьи, новости и обучающие материалы по C++
Библиотека C++ для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по C++ — код, квизы и тесты
Вакансии по C++
💻Другие каналы
Библиотека фронтендера
Библиотека мобильного разработчика
Библиотека хакера
Библиотека тестировщика
Библиотека разработчика игр | Gamedev, Unity, Unreal Engine
Вакансии по фронтенду, джаваскрипт, React, Angular, Vue
Вакансии для мобильных разработчиков
Вакансии по QA тестированию
InfoSec Jobs — вакансии по информационной безопасности
📁Чтобы добавить папку с нашими каналами, нажмите 👉сюда👈
Также у нас есть боты:
Бот с IT-вакансиями
Бот с мероприятиями в сфере IT
Мы в других соцсетях:
🔸VK
🔸YouTube
🔸Дзен
🔸Facebook *
🔸Instagram *
* Организация Meta запрещена на территории РФ
⚠️ В машинном обучении, как в любви: слишком идеальные предсказания – это подозрительно!
Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.
❌ Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться.
💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»
❌ Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом.
💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»
❌ Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности.
💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.
🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!
🔥 Спасибо всем, кто был с нами и участвовал!
💘 Как же это было?
Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉
Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.
❌ Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться.
💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»
❌ Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом.
💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»
❌ Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности.
💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.
🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!
🔥 Спасибо всем, кто был с нами и участвовал!
💘 Как же это было?
Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉
Почему RMSE и MAE могут давать разную оценку качества модели
RMSE (Root Mean Squared Error) и MAE (Mean Absolute Error) — это две популярные метрики регрессии, но они ведут себя по-разному при наличии выбросов.
🔹 MAE — это средняя абсолютная ошибка, измеряет среднее отклонение предсказаний от истинных значений. Она линейно реагирует на ошибки, то есть один большой выброс не окажет значительного влияния.
🔹 RMSE — это корень из среднеквадратичной ошибки, которая квадратично увеличивает вклад больших ошибок. Это значит, что RMSE сильнее наказывает за крупные выбросы, чем MAE.
📊 Пример:
Если у вас есть предсказания: [2, 3, 4, 5, 100] при истинных значениях [2, 3, 4, 5, 6],
то MAE ≈ 18, а RMSE ≈ 40. RMSE выросло сильнее из-за большого выброса в 100.
RMSE (Root Mean Squared Error) и MAE (Mean Absolute Error) — это две популярные метрики регрессии, но они ведут себя по-разному при наличии выбросов.
🔹 MAE — это средняя абсолютная ошибка, измеряет среднее отклонение предсказаний от истинных значений. Она линейно реагирует на ошибки, то есть один большой выброс не окажет значительного влияния.
🔹 RMSE — это корень из среднеквадратичной ошибки, которая квадратично увеличивает вклад больших ошибок. Это значит, что RMSE сильнее наказывает за крупные выбросы, чем MAE.
📊 Пример:
Если у вас есть предсказания: [2, 3, 4, 5, 100] при истинных значениях [2, 3, 4, 5, 6],
то MAE ≈ 18, а RMSE ≈ 40. RMSE выросло сильнее из-за большого выброса в 100.
Как работает градиентный бустинг, и в чем его преимущества перед классическим бустингом
Ответ:
Градиентный бустинг (Gradient Boosting) — это ансамблевый метод, в котором слабые модели (обычно деревья решений) обучаются последовательно, и каждая следующая модель корректирует ошибки предыдущей. В отличие от классического бустинга (AdaBoost), градиентный бустинг минимизирует функцию потерь с помощью градиентного спуска.
Как работает:
▪️ Первая модель обучается на исходных данных.
▪️ Далее вычисляется остаточная ошибка (разница между предсказанными и реальными значениями).
▪️ Следующая модель обучается на этой ошибке, пытаясь её минимизировать.
▪️ Процесс повторяется, и все модели комбинируются для финального предсказания.
Ответ:
Градиентный бустинг (Gradient Boosting) — это ансамблевый метод, в котором слабые модели (обычно деревья решений) обучаются последовательно, и каждая следующая модель корректирует ошибки предыдущей. В отличие от классического бустинга (AdaBoost), градиентный бустинг минимизирует функцию потерь с помощью градиентного спуска.
Как работает:
▪️ Первая модель обучается на исходных данных.
▪️ Далее вычисляется остаточная ошибка (разница между предсказанными и реальными значениями).
▪️ Следующая модель обучается на этой ошибке, пытаясь её минимизировать.
▪️ Процесс повторяется, и все модели комбинируются для финального предсказания.
Что такое трансформеры (Transformers) в машинном обучении, и чем они отличаются от рекуррентных нейронных сетей (RNN)
✔️ Трансформеры — это архитектура нейросетей, основанная на механизме само внимания (self-attention), которая эффективно обрабатывает последовательности данных, такие как текст. Они стали основой моделей NLP, включая BERT и GPT.
Отличия от RNN:
1. Параллелизм — в отличие от RNN, трансформеры могут обрабатывать все токены одновременно, а не последовательно, что ускоряет обучение.
2. Долгосрочные зависимости — механизм само внимания позволяет учитывать контекст из любых частей последовательности, тогда как RNN страдают от проблемы затухающих градиентов.
✔️ Трансформеры — это архитектура нейросетей, основанная на механизме само внимания (self-attention), которая эффективно обрабатывает последовательности данных, такие как текст. Они стали основой моделей NLP, включая BERT и GPT.
Отличия от RNN:
1. Параллелизм — в отличие от RNN, трансформеры могут обрабатывать все токены одновременно, а не последовательно, что ускоряет обучение.
2. Долгосрочные зависимости — механизм само внимания позволяет учитывать контекст из любых частей последовательности, тогда как RNN страдают от проблемы затухающих градиентов.