Telegram Web Link
Какие нелинейные преобразования данных вы знаете?

Нелинейные преобразования меняют структуру распределения. Это помогает улучшить модели, делая их способными улавливать сложные зависимости в данных.

Вот некоторые из наиболее распространённых нелинейных преобразований:
▪️Логарифмическое преобразование.
Оно позволяет увеличить расстояние между небольшими значениями и уменьшить между большими значениями. Преобразование делает скошенное распределение более симметричным и приближённым к нормальному.
▪️Преобразование с помощью квадратного корня.
Действует аналогично логарифмическому, однако менее агрессивно. Его без изменений можно применять к нулевым значениям.
▪️Преобразование Бокса-Кокса.
Обычно используется для трансформации зависимой переменной в случае, если у нас есть ненормальное распределение ошибок и/или нелинейность взаимосвязи, а также в случае гетероскедастичности.
▪️Преобразование Йео-Джонсона.
Позволяет работать с нулевыми и отрицательными значениями.

#машинное_обучение
#статистика
🤖✍️ Как работают языковые модели (LLM): простое объяснение через аналогию с кулинарией

Языковые модели (LLM) — это сложные системы искусственного интеллекта, способные генерировать человекоподобные тексты. Но как именно они это делают? В этой статье мы объясним принципы работы LLM, используя простую и понятную аналогию с приготовлением еды.

🔗 Читать статью
🔗 Зеркало
В чём заключается разница между обычным k-средних (k-means) и k-средних++ (k-means++)?

Разница заключается в том, как инициализируются центроиды. Центроид — это, по сути, репрезентативная точка в каждом кластере. В обычном алгоритме k-means такие точки назначаются случайным образом. Это не самый оптимальный способ, ведь центроиды могут оказаться слишком рядом друг к другу и разделение по кластерам будет неверным.

Для улучшения алгоритма была придумана схема k-means++. По ней, сначала случайным образом выбирается первый центроид в данных. Следующие центроиды назначаются, исходя из сравнения с первым. Вероятность того, что некоторая точка будет выбрана как следующий центроид, пропорциональна квадратному расстоянию между этой точкой и ближайшим центроидом, который уже был выбран. Такой подход гарантирует более равномерное распределение репрезентативных точек по пространству данных.

#машинное_обучение
🤖👾 Как злоумышленники взламывают LLM: 7 ключевых стратегий

Чат-боты на основе ИИ все чаще становятся мишенью для хакеров. Какие уязвимости позволяют злоумышленникам взламывать ИИ-системы и как защитить свои приложения от атак? Рассказываем о 7 ключевых стратегиях.

👉 Читать статью
👉 Зеркало
Расскажите про известные вам меры сходства, используемые в машинном обучении

Наиболее распространёнными мерами сходства являются:

▪️Косинусное сходство
Определяет сходство между двумя векторами по косинусу угла между ними. Значения меры находятся в диапазоне [-1, 1], где 1 означает, что два вектора очень похожи, а -1 — что два вектора полностью отличаются друг от друга.

▪️Евклидово расстояние
Представляет расстояние между двумя точками в n-мерной плоскости. По сути, это длина соединяющей их прямой линии. Можно рассчитать по формуле Пифагора.

▪️Манхэттенское расстояние
Похоже на Евклидова. Согласно этой метрике, расстояние между двумя точками равно сумме модулей разностей их координат.

▪️Индекс подобия Жаккара
Показатель сходства между двумя наборами данных. Если два набора данных имеют одни и те же элементы, их индекс сходства Жаккара будет равен 1. И если у них нет общих элементов, то сходство будет равно 0.

#машинное_обучение
🧑‍💻 Статьи для IT: как объяснять и распространять значимые идеи

Напоминаем, что у нас есть бесплатный курс для всех, кто хочет научиться интересно писать — о программировании и в целом.

Что: семь модулей, посвященных написанию, редактированию, иллюстрированию и распространению публикаций.

Для кого: для авторов, копирайтеров и просто программистов, которые хотят научиться интересно рассказывать о своих проектах.

👉Материалы регулярно дополняются, обновляются и корректируются. А еще мы отвечаем на все учебные вопросы в комментариях курса.
Какая из этих метрик — MAE or MSE или RMSE — более устойчива к выбросам?

▪️MAE (mean absolute error) можно перевести как средняя абсолютная ошибка. Измеряет среднюю абсолютную разницу между фактическими и прогнозируемыми значениями.
▪️MSE (mean square error) можно перевести как среднеквадратичная ошибка. Вычисляет среднее значение квадратов разностей между фактическими и прогнозируемыми значениями.
▪️RMSE (root mean square error) — это корень из среднеквадратичной ошибки.

Среди этих трёх метрик MAE наиболее устойчива к выбросам по сравнению с MSE или RMSE. Основная причина этого — возведение в квадрат значений ошибок. В случае выброса значение ошибки само по себе высокое, и его возведение в квадрат приводит к многократному увеличению значений ошибки, что может «ввести в заблуждение» алгоритм оптимизации.

#машинное_обучение
Расскажите, что вы знаете про генеративно-состязательные сети (GAN)?

Так называют большой класс генеративных моделей, главная особенность которых — обучение одновременно с другой сетью, которая старается отличить сгенерированные объекты от настоящих.

👮‍♂️ Для объяснения принципа работы GAN нередко приводят аналогию с фальшивомонетчиком и полицейским. Так, задача фальшивомонетчика — научиться создавать купюры, которые полицейский не сможет отличить от реальных. Задача полицейского тем временем — научиться отличать купюры фальшивомонетчика от настоящих.

GAN состоят из двух частей: генератора (фальшивомонетчик) и дискриминатора (полицейский). Генератор учится создавать данные, похожие на те, что находятся в обучающем датасете. Дискриминатор выполняет функцию классификатора, пытаясь отличить настоящие данные от тех, что были сгенерированы генеративной сетью. То есть каждому реальному сэмплу и фейковому ставится в соответствие вероятность, которая оценивает степень принадлежности к реальным данным.

#глубокое_обучение
🤖🛠️ 4 полезных инструмента для работы с ИИ: RAGFlow, The Pipe, UFO и SWE-agent

В новой статье рассматриваем 4 инструмента, которые расширяют возможности разработчика: от платформ для работы с документами до агентов, способных исправлять ошибки в коде.

🔗 Читать статью
🔗 Зеркало
Что вы знаете про работу с временными рядами?

Временной ряд — это последовательность значений, которые были измерены в определённом временном промежутке. Такой тип данных может появляться повсеместно. Например, компаниям часто требуется знать ответ на вопрос: что будет происходить с показателями в ближайший день/неделю/месяц. Такими показателями могут быть количество пользователей, установивших приложение, пиковый онлайн и т.д.

Работа с временными рядами — это в основном прогнозирование. С точки зрения машинного обучения мы занимаемся задачей регрессии — предсказываем следующее в ряду значение. Прогноз значения ряда в какой-то момент времени строится на основе известных значений ряда до этого момента времени. Также имеет смысл строить предсказательный интервал для значений.

Виды прогнозирования:

▪️Наивное: «завтра будет как вчера»
Или «почти как вчера». Тут чаще всего используется скользящее среднее для предсказания значение ряда.
Модификацией простого скользящего среднего является взвешенное среднее, внутри которого наблюдениям придаются различные веса, в сумме дающие единицу, при этом обычно последним наблюдениям присваивается больший вес.

▪️Менее наивное: экспоненциальное сглаживание
Вместо взвешивания последних n значений ряда мы будем взвешивать все доступные наблюдения, при этом экспоненциально уменьшая веса по мере углубления в исторические данные. В этом нам поможет формула простого экспоненциального сглаживания.
Можно расширить этот метод. Будем разбивать ряд на две составляющие — уровень (level, intercept) и тренд (trend, slope). Уровень — это и есть ожидаемое значение ряда, которое мы уже предсказывали. А тренд можно тоже прогнозировать при помощи экспоненциального сглаживания.
Кроме того, можно добавить третью компоненту — сезонность, и предсказывать её тоже. Такая модель тройного экспоненциального сглаживания больше известна по фамилиям её создателей — Чарльза Хольта и Питера Винтерса.

Среди других методов анализа временных рядов выделяются:

▪️ ARIMA;
▪️ Сезонная ARIMA (SARIMA);
▪️ Рекуррентные нейронные сети (RNN).

#машинное_обучение
Объясните разницу между списком и кортежем?

▫️Список — это упорядоченная коллекция элементов. Элементы могут иметь любой тип. При этом коллекцию можно изменять: вставить новый элемент, удалить старый и т.д. То есть длина у списка динамическая — при необходимости Python будет выделять новую память.
Список создаётся через квадратные скобки.

▫️Кортеж — это тоже упорядоченная коллекция элементов. Элементы тоже могут иметь любой тип. Однако изменять кортеж нельзя. Кроме того, в памяти Python пустой кортеж — всегда в единственном экземпляре. Пустые списки же каждый раз создаются заново.
Кортеж создаётся через круглые скобки.

#программирование
#python
Самые полезные каналы для программистов в одной подборке!

Сохраняйте себе, чтобы не потерять 💾

🔥Для всех

Библиотека программиста — новости, статьи, досуг, фундаментальные темы
Книги для программистов
IT-мемы
Proglib Academy — тут мы рассказываем про обучение и курсы

🤖Про нейросети
Библиотека робототехники и беспилотников | Роботы, ИИ, интернет вещей
Библиотека нейрозвука | Транскрибация, синтез речи, ИИ-музыка
Библиотека нейротекста | ChatGPT, Gemini, Bing
Библиотека нейровидео | Sora AI, Runway ML, дипфейки
Библиотека нейрокартинок | Midjourney, DALL-E, Stable Diffusion

#️⃣C#

Книги для шарпистов | C#, .NET, F#
Библиотека шарписта — полезные статьи, новости и обучающие материалы по C#
Библиотека задач по C# — код, квизы и тесты
Библиотека собеса по C# — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Вакансии по C#, .NET, Unity Вакансии по PHP, Symfony, Laravel

☁️DevOps

Библиотека devops’а — полезные статьи, новости и обучающие материалы по DevOps
Вакансии по DevOps & SRE
Библиотека задач по DevOps — код, квизы и тесты
Библиотека собеса по DevOps — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования

🐘PHP

Библиотека пхпшника — полезные статьи, новости и обучающие материалы по PHP
Вакансии по PHP, Symfony, Laravel
Библиотека PHP для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по PHP — код, квизы и тесты

🐍Python

Библиотека питониста — полезные статьи, новости и обучающие материалы по Python
Вакансии по питону, Django, Flask
Библиотека Python для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Python — код, квизы и тесты

Java

Книги для джавистов | Java
Библиотека джависта — полезные статьи по Java, новости и обучающие материалы
Библиотека Java для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Java — код, квизы и тесты
Вакансии для java-разработчиков

👾Data Science

Книги для дата сайентистов | Data Science
Библиотека Data Science — полезные статьи, новости и обучающие материалы по Data Science
Библиотека Data Science для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Data Science — код, квизы и тесты
Вакансии по Data Science, анализу данных, аналитике, искусственному интеллекту

🦫Go

Книги для Go разработчиков
Библиотека Go разработчика — полезные статьи, новости и обучающие материалы по Go
Библиотека Go для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Go — код, квизы и тесты
Вакансии по Go

🧠C++

Книги для C/C++ разработчиков
Библиотека C/C++ разработчика — полезные статьи, новости и обучающие материалы по C++
Библиотека C++ для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по C++ — код, квизы и тесты
Вакансии по C++

💻Другие каналы

Библиотека фронтендера
Библиотека мобильного разработчика
Библиотека хакера
Библиотека тестировщика
Вакансии по фронтенду, джаваскрипт, React, Angular, Vue
Вакансии для мобильных разработчиков
Вакансии по QA тестированию
InfoSec Jobs — вакансии по информационной безопасности

📁Чтобы добавить папку с нашими каналами, нажмите 👉сюда👈

Также у нас есть боты:
Бот с IT-вакансиями
Бот с мероприятиями в сфере IT

Мы в других соцсетях:
🔸VK
🔸YouTube
🔸Дзен
🔸Facebook *
🔸Instagram *

* Организация Meta запрещена на территории РФ
🤖 Напоминаем, что у нас есть еженедельная email-рассылка, посвященная последним новостям и тенденциям в мире искусственного интеллекта.

В ней:
● Новости о прорывных исследованиях в области машинного обучения и нейросетей
● Материалы о применении ИИ в разных сферах
● Статьи об этических аспектах развития технологий
● Подборки лучших онлайн-курсов и лекций по машинному обучению
● Обзоры инструментов и библиотек для разработки нейронных сетей
● Ссылки на репозитории с открытым исходным кодом ИИ-проектов
● Фильмы, сериалы и книги

👉Подписаться👈
Как можно визуализировать многомерные данные в 2D?

Существует несколько методов. Вот наиболее распространённые:

▪️Метод главных компонент (PCA)
Позволяет не только понизить размерность, но выявить наиболее информативные признаки в данных. Его суть заключается в предположении о линейности отношений данных и их проекции на подпространство ортогональных векторов, в которых дисперсия будет максимальной. Такие вектора называются главными компонентами и они определяют направления наибольшей изменчивости (информативности) данных. Именно эти главные компоненты можно визуализировать в 2D.

▫️Стохастическое вложение соседей с t-распределением (t-SNE)
Это техника нелинейного снижения размерности, хорошо подходящая для вложения данных высокой размерности для визуализации в пространство низкой размерности (двух- или трёхмерное). Метод моделирует каждый объект высокой размерности двух- или трёхмерной точкой таким образом, что похожие объекты моделируются близко расположенными точками, а непохожие точки моделируются точками, далеко друг от друга отстоящими.

#предобработка_данных
У вас есть полином третьей степени. Вы хотите обучить многослойный перцептрон с линейной функцией активации f(x)=sx. Сколько нейронов должно быть в перцептроне, чтобы аппроксимировать полином третьей степени?

Это вопрос с подвохом. Полином третьей степени представляет собой нелинейную функцию. А перцептрон с данной функцией активации является линейной моделью, и следовательно не может моделировать нелинейные зависимости.

#глубокое_обучение
2024/09/30 06:15:39
Back to Top
HTML Embed Code: