Telegram Web Link
Почему в глубоких нейросетях используют функции активации, такие как ReLU, вместо линейных

Если в каждой нейронной связи использовать только линейные преобразования, вся сеть сводится к одной линейной функции, независимо от количества слоев. Это делает нейросеть неспособной моделировать сложные нелинейные зависимости.

🔹 ReLU (Rectified Linear Unit) и другие нелинейные функции помогают сети изучать сложные представления и разделять данные в многомерном пространстве.
Каковы преимущества и ограничения метода SVM с использованием нелинейных ядер

В отличие от линейного SVM, использование ядра позволяет проекцировать данные в пространство более высокой размерности, где они могут стать линейно разделимыми.

Преимущества:
Обработка нелинейных данных: ядра позволяют эффективно решать задачи, где данные не могут быть разделены линейно.
Гибкость: разнообразие ядер делает SVM универсальным инструментом для различных типов задач.

Ограничения:
🚫 Выбор ядра и параметров: требует тщательной настройки, что может быть трудоемким процессом.
🚫 Вычислительные затраты: для большИх данных SVM с ядром может быть медленным и требовать бОльших вычислительных ресурсов.
Почему уменьшение ошибки на обучающей выборке не всегда приводит к лучшей обобщающей способности модели

Это может быть признаком переобучения. Когда модель слишком хорошо подстраивается под обучающие данные, она начинает запоминать их, а не учиться выделять общие закономерности. В результате на тестовой выборке её точность падает.

🔍 Как избежать? Используйте регуляризацию (L1/L2), кросс-валидацию, добавляйте больше данных или применяйте техники увеличения данных (data augmentation).
Как изменить предобученную нейросеть с классификации на регрессию

Ответ: используем transfer learning — перенос знаний с одной задачи на другую.

Что делаем?
🔹 Заменяем последний полносвязный слой и Softmax (отвечающий за классификацию) на один нейрон (или новый полносвязный слой) для регрессии.
🔹 Опционально замораживаем первые слои, если данных мало или нужна быстрая сходимость.
🔹 Обучаем сеть на новых данных с функцией потерь для регрессии.

Таким образом, мы сохраняем мощные фичи первых слоев, обученные на огромных датасетах, но адаптируем выход под задачу регрессии.
🐳 Делаем конкурента DeepSeek R1-Zero на домашней пекарне: метод GRPO в Unsloth

Обычно LLM требуют мощных GPU, но теперь даже на видеокарте с ограниченной памятью можно обучать модели логического рассуждения.

💡 Фишка — новый алгоритм GRPO, который позволяет моделям развивать логическое мышление без вмешательства человека.

Подробнее в нашей статье: https://proglib.io/sh/MyBCbq9is5
Можно ли использовать CNN для классификации 1D-сигнала

Да, но есть нюансы.
Для временных рядов чаще применяют рекуррентные сети (RNN), так как они учитывают последовательность данных. Однако сверточные сети (CNN) тоже могут быть полезны, особенно если важны повторяющиеся шаблоны в сигнале.

🔹 CNN — хорошо распознают локальные закономерности через скользящие окна.
🔹 RNN — учитывают временную зависимость между значениями.
🔹 QRNN — гибридный подход, объединяющий преимущества CNN и RNN.

Выбор зависит от задачи и структуры данных!
Правда или ложь: градиентный спуск гарантированно найдёт локальный минимум, если шаг обучения уменьшается правильно, а минимум конечен.

💡 Ответ: правда

Но есть нюанс: градиентный спуск не гарантирует нахождение глобального минимума. В сложных функциях он может застрять в локальных минимумах или седловых точках.
Самые полезные каналы для программистов в одной подборке!

Сохраняйте себе, чтобы не потерять 💾

🔥Для всех

Библиотека программиста — новости, статьи, досуг, фундаментальные темы
Книги для программистов
IT-мемы
Proglib Academy — тут мы рассказываем про обучение и курсы
Азбука айтишника — здесь мы познаем азы из мира программирования

🤖Про нейросети
Библиотека робототехники и беспилотников | Роботы, ИИ, интернет вещей
Библиотека нейрозвука | Транскрибация, синтез речи, ИИ-музыка
Библиотека нейротекста | ChatGPT, Gemini, Bing
Библиотека нейровидео | Sora AI, Runway ML, дипфейки
Библиотека нейрокартинок | Midjourney, DALL-E, Stable Diffusion

#️⃣C#

Книги для шарпистов | C#, .NET, F#
Библиотека шарписта — полезные статьи, новости и обучающие материалы по C#
Библиотека задач по C# — код, квизы и тесты
Библиотека собеса по C# — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Вакансии по C#, .NET, Unity Вакансии по PHP, Symfony, Laravel

☁️DevOps

Библиотека devops’а — полезные статьи, новости и обучающие материалы по DevOps
Вакансии по DevOps & SRE
Библиотека задач по DevOps — код, квизы и тесты
Библиотека собеса по DevOps — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования

🐘PHP

Библиотека пхпшника — полезные статьи, новости и обучающие материалы по PHP
Вакансии по PHP, Symfony, Laravel
Библиотека PHP для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по PHP — код, квизы и тесты

🐍Python

Библиотека питониста — полезные статьи, новости и обучающие материалы по Python
Вакансии по питону, Django, Flask
Библиотека Python для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Python — код, квизы и тесты

Java

Книги для джавистов | Java
Библиотека джависта — полезные статьи по Java, новости и обучающие материалы
Библиотека Java для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Java — код, квизы и тесты
Вакансии для java-разработчиков

👾Data Science

Книги для дата сайентистов | Data Science
Библиотека Data Science — полезные статьи, новости и обучающие материалы по Data Science
Библиотека Data Science для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Data Science — код, квизы и тесты
Вакансии по Data Science, анализу данных, аналитике, искусственному интеллекту

🦫Go

Книги для Go разработчиков
Библиотека Go разработчика — полезные статьи, новости и обучающие материалы по Go
Библиотека Go для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по Go — код, квизы и тесты
Вакансии по Go

🧠C++

Книги для C/C++ разработчиков
Библиотека C/C++ разработчика — полезные статьи, новости и обучающие материалы по C++
Библиотека C++ для собеса — тренируемся отвечать на каверзные вопросы во время интервью и технического собеседования
Библиотека задач по C++ — код, квизы и тесты
Вакансии по C++

💻Другие каналы

Библиотека фронтендера
Библиотека мобильного разработчика
Библиотека хакера
Библиотека тестировщика
Библиотека разработчика игр | Gamedev, Unity, Unreal Engine
Вакансии по фронтенду, джаваскрипт, React, Angular, Vue
Вакансии для мобильных разработчиков
Вакансии по QA тестированию
InfoSec Jobs — вакансии по информационной безопасности

📁Чтобы добавить папку с нашими каналами, нажмите 👉сюда👈

Также у нас есть боты:
Бот с IT-вакансиями
Бот с мероприятиями в сфере IT

Мы в других соцсетях:
🔸VK
🔸YouTube
🔸Дзен
🔸Facebook *
🔸Instagram *

* Организация Meta запрещена на территории РФ
⚠️ В машинном обучении, как в любви: слишком идеальные предсказания – это подозрительно!

Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.

Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться.
💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»

Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом.
💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»

Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности.
💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.

🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!

🔥 Спасибо всем, кто был с нами и участвовал!

💘 Как же это было?

Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉
Почему RMSE и MAE могут давать разную оценку качества модели

RMSE (Root Mean Squared Error) и MAE (Mean Absolute Error) — это две популярные метрики регрессии, но они ведут себя по-разному при наличии выбросов.

🔹 MAE — это средняя абсолютная ошибка, измеряет среднее отклонение предсказаний от истинных значений. Она линейно реагирует на ошибки, то есть один большой выброс не окажет значительного влияния.
🔹 RMSE — это корень из среднеквадратичной ошибки, которая квадратично увеличивает вклад больших ошибок. Это значит, что RMSE сильнее наказывает за крупные выбросы, чем MAE.

📊 Пример:
Если у вас есть предсказания: [2, 3, 4, 5, 100] при истинных значениях [2, 3, 4, 5, 6],
то MAE ≈ 18, а RMSE ≈ 40. RMSE выросло сильнее из-за большого выброса в 100.
Как работает градиентный бустинг, и в чем его преимущества перед классическим бустингом

Ответ:
Градиентный бустинг (Gradient Boosting) — это ансамблевый метод, в котором слабые модели (обычно деревья решений) обучаются последовательно, и каждая следующая модель корректирует ошибки предыдущей. В отличие от классического бустинга (AdaBoost), градиентный бустинг минимизирует функцию потерь с помощью градиентного спуска.

Как работает:
▪️ Первая модель обучается на исходных данных.
▪️ Далее вычисляется остаточная ошибка (разница между предсказанными и реальными значениями).
▪️ Следующая модель обучается на этой ошибке, пытаясь её минимизировать.
▪️ Процесс повторяется, и все модели комбинируются для финального предсказания.
Что такое трансформеры (Transformers) в машинном обучении, и чем они отличаются от рекуррентных нейронных сетей (RNN)

✔️ Трансформеры — это архитектура нейросетей, основанная на механизме само внимания (self-attention), которая эффективно обрабатывает последовательности данных, такие как текст. Они стали основой моделей NLP, включая BERT и GPT.

Отличия от RNN:
1. Параллелизм — в отличие от RNN, трансформеры могут обрабатывать все токены одновременно, а не последовательно, что ускоряет обучение.
2. Долгосрочные зависимости — механизм само внимания позволяет учитывать контекст из любых частей последовательности, тогда как RNN страдают от проблемы затухающих градиентов.
🔥 Самые нужные каналы для Data Scientist, чтобы расти в доходе 💸

Data Science | Вопросы собесов
Data Science | Вакансии с удаленкой
Data Science | Тесты

Подпишись, чтобы не потерять ☝️

Реклама. ИП Кивайко Алексей Викторович, ИНН 532121460552. Erid 2Vtzqv6wmCy
Если увеличить объем обучающих данных, всегда ли модель машинного обучения будет работать лучше

Хотя увеличение данных часто улучшает обобщающую способность модели, есть несколько случаев, когда это не дает ожидаемого эффекта:

Шумные или нерелевантные данные — если в новый набор включены некорректные, повторяющиеся или нерелевантные примеры, модель может запутаться и работать хуже.

Неправильная архитектура — если модель недостаточно сложна (например, линейная при нелинейных зависимостях), даже большой объем данных не поможет.

Выборка сдвинута — если новые данные не отражают реальные распределения (например, изображения кошек в наборе данных для собак), модель не улучшится.
Eсли данные для обучения модели нормализованы, всегда ли это улучшит её производительность

Хотя нормализация может помочь многим алгоритмам, особенно тем, которые чувствительны к масштабам данных (например, линейной регрессии или нейросетям), она не всегда приведет к улучшению результатов.

В некоторых случаях, например, когда данные уже находятся в подходящем диапазоне или используются модели, не чувствительные к масштабу (например, деревья решений), нормализация может быть излишней и не улучшит производительность.
⚠️ Почему метрика Silhouette Score не всегда подходит для оценки кластеризации с кластерами разного размера

Silhouette Score может не давать точную оценку, если кластеры сильно различаются по размеру или форме. Это связано с тем, что метрика предполагает сферическую форму кластеров и одинаковый размер. В случае сильно несбалансированных кластеров или выбросов, она может давать ложные результаты, указывая на хорошую кластеризацию, когда это не так.

👍 Альтернатива: Для таких случаев лучше использовать Davies-Bouldin Index или Adjusted Rand Index (ARI).
Вакансии «Библиотеки программиста» — ждем вас в команде!

Мы постоянно растем и развиваемся, поэтому создали отдельную страницу, на которой будут размещены наши актуальные вакансии. Сейчас мы ищем:
👉контент-менеджеров для ведения телеграм-каналов

Подробности тут

Мы предлагаем частичную занятость и полностью удаленный формат работы — можно совмещать с основной и находиться в любом месте🌴

Ждем ваших откликов 👾
2025/02/21 17:04:43
Back to Top
HTML Embed Code: