Telegram Web Link
The Simplest Machine Learning Cheatsheet
โค6๐Ÿ‘1
๐Ÿ“š Data Science Riddle

A query runs slowly due to large table scans. What's the most targeted fix?
Anonymous Quiz
54%
Add indexes
17%
Use aliases
16%
Add DISTINCT
12%
Increase RAM
Everything You need To Know About Databricks
โค3
๐Ÿ“š Data Science Riddle

You want to detect extreme values visually in one plot. Which one is best?
Anonymous Quiz
54%
Box plot
30%
Heatmap
9%
Line chart
7%
Area plot
Mining of Massive Datasets (Leskovec, Stanford).pdf
2.9 MB
The Big Data bible from Stanford: MapReduce, Spark, recommendation systems, PageRank, locality-sensitive hashing, Large scale machine learning and mining social networks/streams all explained clearly with real algorithms you can code today. 500 pages of pure gold.
โค3
If you want to become a Data Scientist, this is the path to follow.
๐Ÿ‘5
๐Ÿ“š Data Science Riddle

You want to prevent inconsistent data across environments. What helps most?
Anonymous Quiz
30%
Checkpoints
19%
Contracts
40%
Indexes
10%
Sharding
๐Ÿ› ๏ธ Running Code in Jupyter Notebooks

Jupyter Notebooks let you write & run code interactively.
Hereโ€™s a quick guide to make your workflow smoother:

โ–ถ๏ธ Kernel & Code Cells
- Each notebook is tied to a single kernel (e.g. IPython).
- Code cells are where you write and execute code.

โŒจ๏ธ Useful Shortcuts
- Shift + Enter โ†’ run current cell, move to next
- Alt + Enter โ†’ run current cell, insert new one below
- Ctrl + Enter โ†’ run current cell, stay in place

๐Ÿ”„ Kernel Management
- Interrupt the kernel if code hangs.
- Restart kernel to reset memory & variables.

๐Ÿ–ฅ๏ธ Output Handling
- Results & errors appear directly under the cell.
- Long-running code outputs appear as theyโ€™re generated.
- Large outputs can be scrolled or collapsed for clarity.

๐Ÿ’ก Pro Tip:
Always โ€œRestart & Run Allโ€ before sharing or saving a notebook.
This ensures reproducibility and clean results.

๐Ÿ‘‰   Explore
โค2
๐Ÿ“š Data Science Riddle

You need fast reads of small files. What storage options fits best?
Anonymous Quiz
23%
Distributed FS
10%
Cold storage
21%
Object Storage
46%
Local SSD
โค4
6 Must-Know Data Engineering Tools For Beginners
โค2๐Ÿ‘1
๐Ÿ“š Data Science Riddle

A feature has low importance but domain experts insist it matters. What do you do?
Anonymous Quiz
27%
Encode it differently
21%
Scale it
12%
Drop the feature
40%
Check interaction effects
Advanced Data Science on Spark.pdf
1.8 MB
Covers Spark for ML, graph processing (GraphFrames), and integration with Hadoop from Stanford University.
โค4
๐Ÿ“š Data Science Riddle

Your estimate has high variance. Best fix?
Anonymous Quiz
55%
Increase sample size
27%
Change confidence level
10%
Reduce bin count
8%
Switch to bootstrap
The Difference Between Model Accuracy and Business Accuracy

A model can be 95% accurateโ€ฆ
yet deliver 0% business value.

Whyโ”
Because data science metrics โ‰  business metrics.

๐Ÿ“Œ Examples:
- A fraud model catches tiny fraud but misses large ones
- A churn model predicts already obvious churners
- A recommendation model boosts clicks but reduces revenue

Always align ML metrics with business KPIs.
Otherwise, your โ€œgreat modelโ€ is just a great illusion.
โค4
๐Ÿ“š Data Science Riddle

Your model's loss fluctuates but doesn't decrease overall. What's the most likely issue?
Anonymous Quiz
28%
Gradient exploding
38%
Weak regularization
22%
Small batch size
12%
Slow optimizer
โœ… Complete AI (Artificial Intelligence) Roadmap ๐Ÿค–๐Ÿš€ 

1๏ธโƒฃ Basics of AI 
๐Ÿ”น What is AI? 
๐Ÿ”น Types: Narrow AI vs General AI 
๐Ÿ”น AI vs ML vs DL 
๐Ÿ”น Real-world applications 

2๏ธโƒฃ Python for AI
๐Ÿ”น Python syntax & libraries 
๐Ÿ”น NumPy, Pandas for data handling 
๐Ÿ”น Matplotlib, Seaborn for visualization 

3๏ธโƒฃ Math Foundation
๐Ÿ”น Linear Algebra: Vectors, Matrices 
๐Ÿ”น Probability & Statistics 
๐Ÿ”น Calculus basics 
๐Ÿ”น Optimization techniques 

4๏ธโƒฃ Machine Learning (ML)
๐Ÿ”น Supervised vs Unsupervised 
๐Ÿ”น Regression, Classification, Clustering 
๐Ÿ”น Scikit-learn for ML 
๐Ÿ”น Model evaluation metrics 

5๏ธโƒฃ Deep Learning (DL)
๐Ÿ”น Neural Networks basics 
๐Ÿ”น Activation functions, backpropagation 
๐Ÿ”น TensorFlow / PyTorch 
๐Ÿ”น CNNs, RNNs, LSTMs 

6๏ธโƒฃ NLP (Natural Language Processing)
๐Ÿ”น Text cleaning & tokenization 
๐Ÿ”น Word embeddings (Word2Vec, GloVe) 
๐Ÿ”น Transformers & BERT 
๐Ÿ”น Chatbots & summarization 

7๏ธโƒฃ Computer Vision
๐Ÿ”น Image processing basics 
๐Ÿ”น OpenCV for CV tasks 
๐Ÿ”น Object detection, image classification 
๐Ÿ”น CNN architectures (ResNet, YOLO) 

8๏ธโƒฃ Model Deployment
๐Ÿ”น Streamlit / Flask APIs 
๐Ÿ”น Docker for containerization 
๐Ÿ”น Deploy on cloud: Render, Hugging Face, AWS 

9๏ธโƒฃ Tools & Ecosystem
๐Ÿ”น Git & GitHub 
๐Ÿ”น Jupyter Notebooks
๐Ÿ”น DVC, MLflow (for tracking models) 

๐Ÿ”Ÿ Build AI Projects
๐Ÿ”น Chatbot, Face recognition 
๐Ÿ”น Spam classifier, Stock prediction 
๐Ÿ”น Language translator, Object detector 
โค2๐Ÿ‘1
๐Ÿ“š Data Science Riddle - CNN Kernels

Which convolution increases channel depth but not spatial size?
Anonymous Quiz
6%
1x1 convolution
31%
3x3 convolution
47%
Depthwise convolution
16%
Transposed convolution
โค1
Normalization vs Standardization: Why Theyโ€™re Not the Same

People treat these two as interchangeable. theyโ€™re not.

๐Ÿ‘‰ Normalization (Min-Max scaling):
Compresses values to 0โ€“1.
Useful when magnitude matters (pixel values, distances).

๐Ÿ‘‰ Standardization (Z-score):
Centers data around mean=0, std=1.
Useful when distribution shape matters (linear/logistic regression, PCA).

๐Ÿ”‘ Key idea:
Normalization preserves relative proportions.
Standardization preserves statistical structure.

Pick the wrong one, and your modelโ€™s geometry becomes distorted.
โค4๐Ÿ‘1
Hey everyone ๐Ÿ‘‹

Tomorrow we are kicking off a new short & free series called:

๐Ÿ“Š Data Importing Series ๐Ÿ“Š

Weโ€™ll go through all the real ways to pull data into Python:
โ†’ CSV, Excel, JSON and more
โ†’ Databases & SQL databases 
โ†’ APIs, Google Sheets, even PDFs & web scraping

Short lessons, ready-to-copy code, zero boring theory.

First part drops tomorrow.
Turn on notifications so you donโ€™t miss it ๐Ÿ””

Whoโ€™s excited? React with a ๐Ÿ”ฅ if you are.
๐Ÿ”ฅ10โค2
Data science/ML/AI
Hey everyone ๐Ÿ‘‹ Tomorrow we are kicking off a new short & free series called: ๐Ÿ“Š Data Importing Series ๐Ÿ“Š Weโ€™ll go through all the real ways to pull data into Python: โ†’ CSV, Excel, JSON and more โ†’ Databases & SQL databases  โ†’ APIs, Google Sheets, even PDFsโ€ฆ
Click Me Load More a CSV file in Python

CSV stands for Comma-Separated Values the most common format for tabular data everywhere.
With pandas, turning a CSV into a powerful, queryable DataFrame takes just a few clear lines.

# Import the pandas library
import pandas as pd

# Specify the path to your CSV file
filename = "data.csv"

# Read the CSV file into a DataFrame
df = pd.read_csv(filename)

#Checking the first five rows
df.head()


Next up โžก๏ธ Click Me Load More an Excel file in Python

๐Ÿ‘‰Join @datascience_bds for more
Part of the @bigdataspecialist family
โค2
2025/12/13 09:18:07
Back to Top
HTML Embed Code: