Telegram Web Link
Forwarded from Github LLMs
LLMs can see and hear without any training

30 Jan 2025 · Kumar Ashutosh, Yossi Gandelsman, Xinlei Chen, Ishan Misra, Rohit Girdhar ·

We present MILS: Multimodal Iterative LLM Solver, a surprisingly simple, training-free approach, to imbue multimodal capabilities into your favorite LLM. Leveraging their innate ability to perform multi-step reasoning, MILS prompts the LLM to generate candidate outputs, each of which are scored and fed back iteratively, eventually generating a solution to the task. This enables various applications that typically require training specialized models on task-specific data. In particular, we establish a new state-of-the-art on emergent zero-shot image, video and audio captioning. MILS seamlessly applies to media generation as well, discovering prompt rewrites to improve text-to-image generation, and even edit prompts for style transfer! Finally, being a gradient-free optimization approach, MILS can invert multimodal embeddings into text, enabling applications like cross-modal arithmetic.

Paper: https://arxiv.org/pdf/2501.18096v1.pdf

Code: https://github.com/facebookresearch/mils

https://www.tg-me.com/deep_learning_proj
Please open Telegram to view this post
VIEW IN TELEGRAM
A Little Bit of Reinforcement Learning
from Human Feedback

📓 Book


@Machine_learn
Free Certification Courses to Learn Data Analytics in 2025:

1. Python
🔗 https://imp.i384100.net/5gmXXo

2. SQL
🔗 https://edx.org/learn/relational-databases/stanford-university-databases-relational-databases-and-sql

3. Statistics and R
🔗 https://edx.org/learn/r-programming/harvard-university-statistics-and-r

4. Data Science: R Basics
🔗https://edx.org/learn/r-programming/harvard-university-data-science-r-basics

5. Excel and PowerBI
🔗 https://learn.microsoft.com/en-gb/training/paths/modern-analytics/

6. Data Science: Visualization
🔗https://edx.org/learn/data-visualization/harvard-university-data-science-visualization

7. Data Science: Machine Learning
🔗https://edx.org/learn/machine-learning/harvard-university-data-science-machine-learning

8. R
🔗https://imp.i384100.net/rQqomy

9. Tableau
🔗https://imp.i384100.net/MmW9b3

10. PowerBI
🔗 https://lnkd.in/dpmnthEA

11. Data Science: Productivity Tools
🔗 https://lnkd.in/dGhPYg6N

12. Data Science: Probability
🔗https://mygreatlearning.com/academy/learn-for-free/courses/probability-for-data-science

13. Mathematics
🔗http://matlabacademy.mathworks.com

14. Statistics
🔗 https://lnkd.in/df6qksMB

15. Data Visualization
🔗https://imp.i384100.net/k0X6vx

16. Machine Learning
🔗 https://imp.i384100.net/nLbkN9

17. Deep Learning
🔗 https://imp.i384100.net/R5aPOR

18. Data Science: Linear Regression
🔗https://pll.harvard.edu/course/data-science-linear-regression/2023-10

19. Data Science: Wrangling
🔗https://edx.org/learn/data-science/harvard-university-data-science-wrangling

20. Linear Algebra
🔗 https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra

21. Probability
🔗 https://pll.harvard.edu/course/data-science-probability

22. Introduction to Linear Models and Matrix Algebra
🔗https://edx.org/learn/linear-algebra/harvard-university-introduction-to-linear-models-and-matrix-algebra

23. Data Science: Capstone
🔗 https://edx.org/learn/data-science/harvard-university-data-science-capstone

24. Data Analysis
🔗 https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis

25. IBM Data Science Professional Certificate
https://imp.i384100.net/9gxbbY

26. Neural Networks and Deep Learning
https://imp.i384100.net/DKrLn2

27. Supervised Machine Learning: Regression and Classification
https://imp.i384100.net/g1KJEA

@Machine_learn
RIGNO: A Graph-based framework for robust and accurate operator learning for PDEs on arbitrary domains


Paper: https://arxiv.org/pdf/2501.19205v1.pdf

Code: https://github.com/camlab-ethz/rigno



@Machine_learn
نفر ۵ از این پروژه همچنان خالی هست...!
@Raminmousa
Forwarded from Github LLMs
Awesome-LLM-as-a-judge Survey

Github

🔸https://www.tg-me.com/deep_learning_proj
Please open Telegram to view this post
VIEW IN TELEGRAM
CoSTI: Consistency Models for (a faster) Spatio-Temporal Imputation

31 Jan 2025 · Javier Solís-García, Belén Vega-Márquez, Juan A. Nepomuceno, Isabel A. Nepomuceno-Chamorro ·

Multivariate Time Series Imputation (MTSI) is crucial for many applications, such as healthcare monitoring and traffic management, where incomplete data can compromise decision-making. Existing state-of-the-art methods, like Denoising Diffusion Probabilistic Models (DDPMs), achieve high imputation accuracy; however, they suffer from significant computational costs and are notably time-consuming due to their iterative nature. In this work, we propose CoSTI, an innovative adaptation of Consistency Models (CMs) for the MTSI domain. CoSTI employs Consistency Training to achieve comparable imputation quality to DDPMs while drastically reducing inference times, making it more suitable for real-time applications. We evaluate CoSTI across multiple datasets and missing data scenarios, demonstrating up to a 98% reduction in imputation time with performance on par with diffusion-based models. This work bridges the gap between efficiency and accuracy in generative imputation tasks, providing a scalable solution for handling missing data in critical spatio-temporal systems.

Paper: https://arxiv.org/pdf/2501.19364v1.pdf

Code: https://github.com/javiersgjavi/costi



@Machine_learn
Demystifying Long Chain-of-Thought Reasoning in LLMs

🖥 paper
🧠 code


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Introduction to Python for Computational Science and Engineering

📚 book


@Machine_learn
Practical Statistics for Data Scientists.pdf
16 MB
Practical Statistics for Data Scientists
50+ Essential Concepts Using R and Python
#Python #Book

@Machine_learn
با عرض سلام
تخفیف ۵۰٪ دو پکیچ یادگیری ماشین و یادگیری عمیق که شامل ۳۶ پروژه عملی در بحث پردازش تصویر و پردازش متن می باشند رو در نظر گرفتیم. دوستانی که نیاز به این دو پک دارند می تونن به بنده پیام بدن. ۱ ماه مشاوره ریکان راجع به این پروژه ها هم خواهیم داشت.
🟥🟥🟥🟥🟥🟥
@Raminmousa
Please open Telegram to view this post
VIEW IN TELEGRAM
Machine learning books and papers pinned «با عرض سلام تخفیف ۵۰٪ دو پکیچ یادگیری ماشین و یادگیری عمیق که شامل ۳۶ پروژه عملی در بحث پردازش تصویر و پردازش متن می باشند رو در نظر گرفتیم. دوستانی که نیاز به این دو پک دارند می تونن به بنده پیام بدن. ۱ ماه مشاوره ریکان راجع به این پروژه ها هم خواهیم داشت.…»
Microsoft just updated their blog with 300 examples of real-world AI use cases.

📕 Article


@Machine_learn
Forwarded from Github LLMs
DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding

13 Dec 2024 · Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao, Yisong Wang, Chong Ruan ·

We present DeepSeek-VL2, an advanced series of large Mixture-of-Experts (MoE) Vision-Language Models that significantly improves upon its predecessor, DeepSeek-VL, through two key major upgrades. For the vision component, we incorporate a dynamic tiling vision encoding strategy designed for processing high-resolution images with different aspect ratios. For the language component, we leverage #DeepSeekMoE models with the Multi-head Latent Attention mechanism, which compresses Key-Value cache into latent vectors, to enable efficient inference and high throughput. Trained on an improved vision-language dataset, DeepSeek-VL2 demonstrates superior capabilities across various tasks, including but not limited to visual question answering, optical character recognition, document/table/chart understanding, and visual grounding. Our model series is composed of three variants: DeepSeek-VL2-Tiny, #DeepSeek-VL2-Small and DeepSeek-VL2, with 1.0B, 2.8B and 4.5B activated parameters respectively. DeepSeek-VL2 achieves competitive or state-of-the-art performance with similar or fewer activated parameters compared to existing open-source dense and MoE-based models. Codes and pre-trained models are publicly accessible at https://github.com/deepseek-ai/DeepSeek-VL2.

Paper: https://arxiv.org/pdf/2412.10302v1.pdf

Code: https://github.com/deepseek-ai/deepseek-vl2

Datasets: RefCOCO TextVQA MMBench
DocVQA
💠
https://www.tg-me.com/deep_learning_proj
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Papers
با عرض سلام
نفر سوم از مقاله زیر رو جهت همکاری نیاز داریم. این مقاله ۸ ماه داریم روش کار میکنیم.

Title: Gaussian Mixture latent for Recurrent Neural Networks Basic deficiencies


The problem of time series prediction analyzes patterns in past data to predict the future. Traditional machine learning algorithms, despite achieving impressive results, require manual feature selection. Automatic feature selection along with the addition of time concept in deep recurrent networks has led to the provision of more suitable solutions. The selection of feature order in deep recurrent networks leads to the provision of different results due to the use of Back-propagation. The problem of selecting feature order is an NP-complete problem. In this research, the aim is to provide a solution to improve this problem.......!
هزینه مشارکت نفر سوم این مقاله ۱۰۰۰$ و ژورنال هدف Expert system میباشد.
@Raminmousa
@Machine_learn
CycleGuardian: A Framework for Automatic RespiratorySound classification Based on Improved Deep clustering and Contrastive Learning

🖥 Github: https://github.com/chumingqian/CycleGuardian

📕 Paper: https://arxiv.org/abs/2502.00734v1

🌟 Dataset: https://paperswithcode.com/dataset/icbhi-respiratory-sound-database


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Mathematical Foundations of Reinforcement Learning

📚 Link

@Machine_learn
Forwarded from Papers
با عرض سلام بسیاری از دوستان که می خواهند مقاله شروع کنند نیاز به نقش راهی برای شروع دارند. از این رو سعی داریم جهت مشاوره در موضوعات زیر همکاری داشته باشیم. انتخاب موضوع، انتخاب ایده، بررسی ساختار کلی مقاله و انتخاب ژورنال با بنده خواهد بود و هر هفته یک جلسه جهت بررسی کارهای انجام شده خواهیم داشت. هزینه مشاوره در هر موضوع ۵ تومن می باشد.

💠Medical Image

1-alzheimer disease classification
2-Wound image classification
3- skin cancer classification
4- breast cancer segmentation

💠Time series:
1- crypro market price prediction: High dimensional features
2-crypto market illiquidity prediction: High dimensional features
3-Air quality prediction
4-Network traffic prediction
5-Malware detection

💠Text mining
1-Large languge model: systmatic survey
2-multi-domain sentiment analysis
3- Extracting psychiatric stressors for suicide from twitter
جهت مشارکت می تونین با ایدی بنده در ارتباط باشین.
@Raminmousa
Please open Telegram to view this post
VIEW IN TELEGRAM
Machine learning books and papers pinned «با عرض سلام بسیاری از دوستان که می خواهند مقاله شروع کنند نیاز به نقش راهی برای شروع دارند. از این رو سعی داریم جهت مشاوره در موضوعات زیر همکاری داشته باشیم. انتخاب موضوع، انتخاب ایده، بررسی ساختار کلی مقاله و انتخاب ژورنال با بنده خواهد بود و هر هفته یک جلسه…»
2025/02/22 22:06:34
Back to Top
HTML Embed Code: