Telegram Web Link
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

Paper submitted by #DeepSeek team has generated significant attention in the AI community.

This work addresses the enhancement of reasoning capabilities in Large Language Models (LLMs) through the application of reinforcement learning techniques. The authors introduce a novel framework, DeepSeek-R1, which aims to improve LLM reasoning abilities by incorporating incentives for logical reasoning processes within their training. This integration of reinforcement learning allows LLMs to go beyond basic linguistic processing, developing sophisticated reasoning methods that can boost performance across a wide array of complex applications.

This approach has cause lots of discussions in different communities, but it definitely opens up the whole new direction of development for the research.

Paper: https://arxiv.org/abs/2501.12948

#nn #LLM

@Machine_learn
2
Forwarded from Github LLMs
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
⭐️ Fast Think-on-Graph: Wider, Deeper and Faster Reasoning of Large Language Model on Knowledge Graph

🖥 Github: https://github.com/dosonleung/fasttog

📕 Paper: https://arxiv.org/abs/2501.14300v1

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
International AI Safety Report

📚 Report

@Machine_learn
𝗡𝗟𝗣_𝘄𝗶𝘁𝗵_𝗧𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺𝗲𝗿𝘀.pdf
8.2 MB
Natural Language Processing with Transformers Building Language Applications
with Hugging Face

#Book

@Machine_learn
🔥2👍1
🐋 DeepClaude


git clone https://github.com/getasterisk/deepclaude.git
cd deepclaude

Github
Docs

@Machine_learn
اخرین زمان برای مشارکت در این پروژه تا اخر شب...!
@Raminmousa
OpenAI o3-mini System Card

📚 Reed

@Machine_learn
DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

Paper: https://arxiv.org/pdf/2401.02954v1.pdf

Code: https://github.com/deepseek-ai/deepseek-llm

Dataset: AlignBench


@Machine_learn
2
📃Can social network analysis contribute to supply chain
management? A systematic literature review and
bibliometric analysis


📎 Study paper


@Machine_learn
👍1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
با عرض سلام در يكي از پروژه هاي طبقه بندي سرطان پوست نياز به مشاركت داريم. جايگاه نفر سوم خالي مي باشد.

🔸🔻🔸🔻🔸🔻🔻
@Raminmousa
Please open Telegram to view this post
VIEW IN TELEGRAM
Machine learning books and papers pinned «با عرض سلام در يكي از پروژه هاي طبقه بندي سرطان پوست نياز به مشاركت داريم. جايگاه نفر سوم خالي مي باشد. 🔸🔻🔸🔻🔸🔻🔻 @Raminmousa»
Forwarded from Papers
با عرض سلام نفر ٥ ام از پروژه جديدمون باقي مونده و ٦ جايگاه ديگه پر شدن.
امكان اموزش كامل كار
كدنويسي كار
نحوه جمع اوري داده ها
نگارش مقاله در اين كار وجود داره


Project Title:
MedRec: Medical recommender system for image classification without retraining

Github: https://github.com/Ramin1Mousa/MedicalRec

Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence

Impact factor: 20.8




🔺 5- 300$
جهت مشارکت می تونید به ایدی بنده پیام بدین.
@Raminmousa
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Github LLMs
LLMs can see and hear without any training

30 Jan 2025 · Kumar Ashutosh, Yossi Gandelsman, Xinlei Chen, Ishan Misra, Rohit Girdhar ·

We present MILS: Multimodal Iterative LLM Solver, a surprisingly simple, training-free approach, to imbue multimodal capabilities into your favorite LLM. Leveraging their innate ability to perform multi-step reasoning, MILS prompts the LLM to generate candidate outputs, each of which are scored and fed back iteratively, eventually generating a solution to the task. This enables various applications that typically require training specialized models on task-specific data. In particular, we establish a new state-of-the-art on emergent zero-shot image, video and audio captioning. MILS seamlessly applies to media generation as well, discovering prompt rewrites to improve text-to-image generation, and even edit prompts for style transfer! Finally, being a gradient-free optimization approach, MILS can invert multimodal embeddings into text, enabling applications like cross-modal arithmetic.

Paper: https://arxiv.org/pdf/2501.18096v1.pdf

Code: https://github.com/facebookresearch/mils

https://www.tg-me.com/deep_learning_proj
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍1🔥1
A Little Bit of Reinforcement Learning
from Human Feedback

📓 Book


@Machine_learn
🔥2👍1
2025/07/08 23:34:04
Back to Top
HTML Embed Code: