Telegram Web Link
Primers • Overview of Large Language Models

📖 Link


@Machine_learn
با عرض سلام نفر سوم از مقاله مروری بالا رو نیاز داریم. با قبولی شرایط کسی نیاز داشت به بنده اطلاع بده.
نشریه مد نظر : Nature
@Raminmousa
Artificial Intelligence for Beginners - A Curriculum

📚 Course

@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
🛹 RollingDepth: Video Depth without Video Models

🔗 Discover More:
* Source Code: GitHub
* Paper Page: RollingDepth
* Try Demo: Try it here
* Paper Page: RollingDepth

@Machine_learn
Hands-On Large Language Models

📚 Github


@Machine_learn
با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)

جهت تهیه می تونین به ایدی بنده مراجعه کنین

@Raminmousa
Reinforcement Learning: An Overview

📕 Book

@Machine_learn
OminiControl: Minimal and Universal Control for Diffusion Transformer


🔗 Discover More:
* Source Code: GitHub
* Try Demo: Try it here
* Paper Page: Read Paper

@Machine_learn
Forwarded from Github LLMs
🌟 GRIN MoE: Mixture-of-Experts от Microsoft.


🟢total parameters: 16x3.8B;
🟢active parameters: 6.6B;
🟢context length: 4096;
🟢number of embeddings 4096;
🟢number of layers: 32;
https://www.tg-me.com/deep_learning_proj


🟡Arxiv
🟡Demo
🖥Github
Please open Telegram to view this post
VIEW IN TELEGRAM
📑Drug Discovery in the Age of Artificial Intelligence: Transformative Target-Based Approaches


📎 Study the paper



@Machine_learn
🎓Ensemble approaches for Link Prediction


📎 Study thesis

@Machine_learn
📚Book Chapter:
Recent Advances in Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences



📎 Study

@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 D-FINE:
D-FINE

# Create env via conda
conda create -n dfine python=3.11.9
conda activate dfine

# Install requirements for inference
pip install -r tools/inference/requirements.txt

# Install ONNX
pip install onnx onnxsim

# Choose a model
export model=l # s, m, x

# Inference
python tools/inference/onnx_inf.py --onnx model.onnx --input image.jpg # video.mp4


🟡Arxiv
🖥Github


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 BioNeMo: A Framework for Developing AI Models for Drug Design.

NVIDIA BioNeMo2 Framework is a set of tools, libraries, and models for computational drug discovery and design.



▶️ Pre-trained models:

🟢 ESM-2 is a pre-trained bidirectional encoder (BERT-like) for amino acid sequences. BioNeMo2 includes checkpoints with parameters 650M and 3B;

🟢 Geneformer is a tabular scoring model that generates a dense representation of a cell's scRNA by examining co-expression patterns in individual cells.


▶️ Datasets:

🟠 CELLxGENE is a collection of publicly available single-cell datasets collected by the CZI (Chan Zuckerberg Initiative) with a total volume of 24 million cells;


🟠 UniProt is a database of clustered sets of protein sequences from UniProtKB, created on the basis of translated genomic data.



🟡 Project page
🟡 Documentation
🖥 GitHub

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics

https://www.nature.com/articles/s41467-023-39868-6.pdf

@Machine_learn
2025/07/07 02:12:19
Back to Top
HTML Embed Code: