Please open Telegram to view this post
VIEW IN TELEGRAM
OmniGen: Unified Image Generation
Paper: https://arxiv.org/pdf/2409.11340v1.pdf
Code: https://github.com/vectorspacelab/omnigen
Dataset: DreamBooth | MagicBrush
โ
@Machine_learn
Paper: https://arxiv.org/pdf/2409.11340v1.pdf
Code: https://github.com/vectorspacelab/omnigen
Dataset: DreamBooth | MagicBrush
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
๐ Advancing biomedical discovery and innovation in the era of big data and artificial intelligence
๐ฅ Perspective Article
๐ Study the paper
โ
@Machine_learn
๐ฅ Perspective Article
๐ Study the paper
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
๐ Natural Language Processing Methods for the Study of Protein-Ligand Interactions
๐Publish year: 2024
๐ Study the paper
โ @Machine_learn
๐Publish year: 2024
๐ Study the paper
โ @Machine_learn
Here are some Hyperparameter (HP) tuning & optimization packages you can use in your projects:
- Scikit-Optimize: https://lnkd.in/gbJqdFq9
- Optuna: https://optuna.org/
- Hyperopt: https://lnkd.in/gPSRhW_6
- Ray.tune: https://lnkd.in/gzrDAbHg
- Keras tuner: https://lnkd.in/g_HDHiug
- BayesianOptimization: https://lnkd.in/g8UKEvjc
- Metric Optimization Engine (MOE): https://lnkd.in/g89JGFB2
- Spearmint: https://lnkd.in/gJwG3AwE
- GPyOpt: https://lnkd.in/g4cWEBPz
- SigOpt: https://sigopt.com/
โ
@Machine_learn
- Scikit-Optimize: https://lnkd.in/gbJqdFq9
- Optuna: https://optuna.org/
- Hyperopt: https://lnkd.in/gPSRhW_6
- Ray.tune: https://lnkd.in/gzrDAbHg
- Keras tuner: https://lnkd.in/g_HDHiug
- BayesianOptimization: https://lnkd.in/g8UKEvjc
- Metric Optimization Engine (MOE): https://lnkd.in/g89JGFB2
- Spearmint: https://lnkd.in/gJwG3AwE
- GPyOpt: https://lnkd.in/g4cWEBPz
- SigOpt: https://sigopt.com/
Please open Telegram to view this post
VIEW IN TELEGRAM
lnkd.in
LinkedIn
This link will take you to a page thatโs not on LinkedIn
๐ฅช TripoSR (MIT license) is now available on , free for individual use!
๐งฌcode: https://github.com/VAST-AI-Research/TripoSR
๐paper: https://arxiv.org/abs/2403.02151
๐runpod: https://github.com/camenduru/triposr-tost
๐jupyter: https://github.com/camenduru/TripoSR-jupyter
@Machine_learn
๐งฌcode: https://github.com/VAST-AI-Research/TripoSR
๐paper: https://arxiv.org/abs/2403.02151
๐runpod: https://github.com/camenduru/triposr-tost
๐jupyter: https://github.com/camenduru/TripoSR-jupyter
@Machine_learn
GitHub
GitHub - VAST-AI-Research/TripoSR
Contribute to VAST-AI-Research/TripoSR development by creating an account on GitHub.
How to Train Long-Context Language Models (Effectively)
๐ฅ Github: https://github.com/hijkzzz/pymarl2
๐ Paper: https://arxiv.org/abs/2410.02511v1
โ
Dataset: https://paperswithcode.com/dataset/smac
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild
Paper: https://arxiv.org/pdf/2409.12259v1.pdf
Code: https://github.com/rolpotamias/WiLoR
Datasets: FreiHAND - HO-3D v2 - COCO-WholeBody
โ
@Machine_learn
Paper: https://arxiv.org/pdf/2409.12259v1.pdf
Code: https://github.com/rolpotamias/WiLoR
Datasets: FreiHAND - HO-3D v2 - COCO-WholeBody
Please open Telegram to view this post
VIEW IN TELEGRAM
Large Brain Model for Learning Generic Representations with Tremendous EEG Data in BCI
๐ฅ Github: https://github.com/935963004/labram
๐ Paper: https://arxiv.org/abs/2405.18765v1
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Papers
ุณูุงู
ุฏูุณุชุงูู ูู ู
ูุงูู ุจุฑุงู ุงุฑุณุงู ุจู ฺูุฑูุงู ุฏุงุฑู ู
ู ุชููู ุจูุฏู ุฑู ุจู ุนููุงู ุฏุงูุฑ ุฏุฑ ุณู ฺูุฑูุงู ุฒูุฑ ู
ุนุฑูู ูููุฏ
1-Knowledge-Based system(https://www.sciencedirect.com/journal/knowledge-based-systems)
2-Machine learning with application(https://www.sciencedirect.com/journal/machine-learning-with-applications)
3-Ai(https://www.sciencedirect.com/journal/artificial-intelligence)
Name:Ramin Mousa
Email: [email protected]
ูู ฺููู ุฏูุณุชุงูู ูู ู ูุงูู ุจุฑุงู ุงุฑุณุงู ุฏุงุฑู ู ู ุชููู ูุจู ุงุฑุณุงู ุฌูุช ุจุฑุฑุณู ุจู ุจูุฏู ุงุฑุณุงู ููู ุชุง ูู ูพูุด ุฏุงูุฑู ุงูุฌุงู ุจุฏู .
@Raminmousa
@Paper4money
@Machine_learn
1-Knowledge-Based system(https://www.sciencedirect.com/journal/knowledge-based-systems)
2-Machine learning with application(https://www.sciencedirect.com/journal/machine-learning-with-applications)
3-Ai(https://www.sciencedirect.com/journal/artificial-intelligence)
Name:Ramin Mousa
Email: [email protected]
ูู ฺููู ุฏูุณุชุงูู ูู ู ูุงูู ุจุฑุงู ุงุฑุณุงู ุฏุงุฑู ู ู ุชููู ูุจู ุงุฑุณุงู ุฌูุช ุจุฑุฑุณู ุจู ุจูุฏู ุงุฑุณุงู ููู ุชุง ูู ูพูุด ุฏุงูุฑู ุงูุฌุงู ุจุฏู .
@Raminmousa
@Paper4money
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
TensorIR: An Abstraction for Automatic Tensorized Program Optimization
Paper: https://arxiv.org/pdf/2207.04296v2.pdf
Codes: https://github.com/mlc-ai/web-llm - https://github.com/apache/tvm
โ
@Machine_learn
Paper: https://arxiv.org/pdf/2207.04296v2.pdf
Codes: https://github.com/mlc-ai/web-llm - https://github.com/apache/tvm
Please open Telegram to view this post
VIEW IN TELEGRAM
# setting up a venv:
conda create -n depth-pro -y python=3.9
conda activate depth-pro
pip install -e .
# Download pretrained checkpoints:
source get_pretrained_models.sh
# Run the inference from CLI on a single image:
depth-pro-run -i ./data/example.jpg
# Running from python
from PIL import Image
import depth_pro
model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM