🌟 MG-LLaVA - multimodal LLM with advanced capabilities for working with visual information
Just recently, the guys from Shanghai University rolled out MG-LLaVA - MLLM, which expands the capabilities of processing visual information through the use of additional components: special components that are responsible for working with low and high resolution.
MG-LLaVA integrates an additional high-resolution visual encoder to capture fine details, which are then combined with underlying visual features using the Conv-Gate network.
Trained exclusively on publicly available multimodal data, MG-LLaVA achieves excellent results.
🟡 MG-LLaVA page
🖥 GitHub
@Machine_learn
Just recently, the guys from Shanghai University rolled out MG-LLaVA - MLLM, which expands the capabilities of processing visual information through the use of additional components: special components that are responsible for working with low and high resolution.
MG-LLaVA integrates an additional high-resolution visual encoder to capture fine details, which are then combined with underlying visual features using the Conv-Gate network.
Trained exclusively on publicly available multimodal data, MG-LLaVA achieves excellent results.
🟡 MG-LLaVA page
🖥 GitHub
@Machine_learn
👍2
Aligning Sight and Sound: Advanced Sound Source Localization Through Audio-Visual Alignment
🖥 Github: https://github.com/kaistmm/SSLalignment
📕 Paper: https://arxiv.org/abs/2407.13676v1
🚀 Dataset: https://paperswithcode.com/dataset/is3-interactive-synthetic-sound-source
@Machine_learn
🖥 Github: https://github.com/kaistmm/SSLalignment
📕 Paper: https://arxiv.org/abs/2407.13676v1
🚀 Dataset: https://paperswithcode.com/dataset/is3-interactive-synthetic-sound-source
@Machine_learn
🔥3
🚀 Dataset: https://paperswithcode.com/dataset/behave
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
⚡️ EMO-Disentanger
🖥 Github: https://github.com/yuer867/emo-disentanger
📕 Paper: https://arxiv.org/abs/2407.20955v1
🚀 Dataset: https://paperswithcode.com/dataset/emopia
@Machine_learn
🚀 Dataset: https://paperswithcode.com/dataset/emopia
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
How to Think Like a Computer Scientist: Interactive Edition
https://runestone.academy/ns/books/published/thinkcspy/index.html
@Machine_learn
https://runestone.academy/ns/books/published/thinkcspy/index.html
@Machine_learn
👍9
No learning rates needed: Introducing SALSA - Stable Armijo Line Search Adaptation
🖥 Github: https://github.com/themody/no-learning-rates-needed-introducing-salsa-stable-armijo-line-search-adaptation
📕 Paper: https://arxiv.org/abs/2407.20650v1
🚀 Dataset: https://paperswithcode.com/dataset/cifar-10
✅ @Machine_learn
🖥 Github: https://github.com/themody/no-learning-rates-needed-introducing-salsa-stable-armijo-line-search-adaptation
📕 Paper: https://arxiv.org/abs/2407.20650v1
🚀 Dataset: https://paperswithcode.com/dataset/cifar-10
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2🔥1
https://research.google/blog/scaling-hierarchical-agglomerative-clustering-to-trillion-edge-graphs/
Please open Telegram to view this post
VIEW IN TELEGRAM
Pixart-Sigma, the first high-quality, transformer-based image generation training framework!
🖥 Github: https://github.com/PixArt-alpha/PixArt-sigma
🔥Demo: https://huggingface.co/spaces/PixArt-alpha/PixArt-Sigma
✅ @Machine_learn
🔥Demo: https://huggingface.co/spaces/PixArt-alpha/PixArt-Sigma
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - PixArt-alpha/PixArt-sigma: PixArt-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image Generation
PixArt-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image Generation - PixArt-alpha/PixArt-sigma
Recall-Oriented-CL-Framework
🖥 Github: https://github.com/bigdata-inha/recall-oriented-cl-framework
📕 Paper: https://arxiv.org/pdf/2403.03082v1.pdf
🔥Dataset: https://paperswithcode.com/dataset/cifar-10
✨ Tasks: https://paperswithcode.com/task/continual-learning
✅ @Machine_learn
🔥Dataset: https://paperswithcode.com/dataset/cifar-10
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - bigdata-inha/recall-oriented-cl-framework
Contribute to bigdata-inha/recall-oriented-cl-framework development by creating an account on GitHub.
❤1
با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)
جهت تهیه می تونین به ایدی بنده مراجعه کنین
@Raminmousa
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)
جهت تهیه می تونین به ایدی بنده مراجعه کنین
@Raminmousa
👍1
Graph Diffusion Policy Optimization
🖥 Github: https://github.com/sail-sg/gdpo
📕 Paper: https://arxiv.org/pdf/2402.16302v1.pdf
🔥Dataset: https://paperswithcode.com/dataset/zinc
✨ Tasks: https://paperswithcode.com/task/graph-generation
✅ @Machine_learn
🔥Dataset: https://paperswithcode.com/dataset/zinc
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7
Very cool cookbook here
PDF extractor, calendar agent, data analyst, financial agent & more
docs: https://docs.cohere.com/docs/multi-step-tool-use
cookbook: https://github.com/cohere-ai/notebooks/tree/main?tab=readme-ov-file#agents
✅ @Machine_learn
PDF extractor, calendar agent, data analyst, financial agent & more
docs: https://docs.cohere.com/docs/multi-step-tool-use
cookbook: https://github.com/cohere-ai/notebooks/tree/main?tab=readme-ov-file#agents
Please open Telegram to view this post
VIEW IN TELEGRAM
Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing
🖥 Github: https://github.com/wangkai930418/DPL
📕 Paper: https://arxiv.org/abs/2405.01496v1
🔥Dataset: https://neurips.cc/virtual/2023/poster/72801
@Machine_learn
🔥Dataset: https://neurips.cc/virtual/2023/poster/72801
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Recurrent Neural Networks Learn to Store and Generate Sequences
using Non-Linear Representations
#RNN
https://arxiv.org/pdf/2408.10920
@Machine_learn
using Non-Linear Representations
#RNN
https://arxiv.org/pdf/2408.10920
@Machine_learn
👍2
MER 2024: Semi-Supervised Learning, Noise Robustness, and Open-Vocabulary Multimodal Emotion Recognition
🖥 Github: https://github.com/zeroqiaoba/mertools
📕 Paper: https://arxiv.org/abs/2404.17113v1
🔥Dataset: https://paperswithcode.com/dataset/voxceleb2
@Machine_learn
🔥Dataset: https://paperswithcode.com/dataset/voxceleb2
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - zeroQiaoba/MERTools: Toolkits for Multimodal Emotion Recognition
Toolkits for Multimodal Emotion Recognition. Contribute to zeroQiaoba/MERTools development by creating an account on GitHub.
📃A key review on graph data science: The power of graphs in scientific studies
📎 Study paper
@Machine_learn
📎 Study paper
@Machine_learn
👍1