🌟 An Empirical Study of Mamba-based Pedestrian Attribute Recognition
🖥 Github: https://github.com/event-ahu/openpar
📕 Paper: https://arxiv.org/pdf/2407.10374v1.pdf
🚀 Dataset: https://paperswithcode.com/dataset/peta
@Machine_learn
🚀 Dataset: https://paperswithcode.com/dataset/peta
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Aligning Sight and Sound: Advanced Sound Source Localization Through Audio-Visual Alignment
🖥 Github: https://github.com/kaistmm/SSLalignment
📕 Paper: https://arxiv.org/abs/2407.13676v1
🚀 Dataset: https://paperswithcode.com/dataset/is3-interactive-synthetic-sound-source
@Machine_learn
🚀 Dataset: https://paperswithcode.com/dataset/is3-interactive-synthetic-sound-source
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 MG-LLaVA - multimodal LLM with advanced capabilities for working with visual information
Just recently, the guys from Shanghai University rolled out MG-LLaVA - MLLM, which expands the capabilities of processing visual information through the use of additional components: special components that are responsible for working with low and high resolution.
MG-LLaVA integrates an additional high-resolution visual encoder to capture fine details, which are then combined with underlying visual features using the Conv-Gate network.
Trained exclusively on publicly available multimodal data, MG-LLaVA achieves excellent results.
🟡 MG-LLaVA page
🖥 GitHub
@Machine_learn
Just recently, the guys from Shanghai University rolled out MG-LLaVA - MLLM, which expands the capabilities of processing visual information through the use of additional components: special components that are responsible for working with low and high resolution.
MG-LLaVA integrates an additional high-resolution visual encoder to capture fine details, which are then combined with underlying visual features using the Conv-Gate network.
Trained exclusively on publicly available multimodal data, MG-LLaVA achieves excellent results.
🟡 MG-LLaVA page
🖥 GitHub
@Machine_learn
Aligning Sight and Sound: Advanced Sound Source Localization Through Audio-Visual Alignment
🖥 Github: https://github.com/kaistmm/SSLalignment
📕 Paper: https://arxiv.org/abs/2407.13676v1
🚀 Dataset: https://paperswithcode.com/dataset/is3-interactive-synthetic-sound-source
@Machine_learn
🖥 Github: https://github.com/kaistmm/SSLalignment
📕 Paper: https://arxiv.org/abs/2407.13676v1
🚀 Dataset: https://paperswithcode.com/dataset/is3-interactive-synthetic-sound-source
@Machine_learn
🚀 Dataset: https://paperswithcode.com/dataset/behave
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ EMO-Disentanger
🖥 Github: https://github.com/yuer867/emo-disentanger
📕 Paper: https://arxiv.org/abs/2407.20955v1
🚀 Dataset: https://paperswithcode.com/dataset/emopia
@Machine_learn
🚀 Dataset: https://paperswithcode.com/dataset/emopia
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
How to Think Like a Computer Scientist: Interactive Edition
https://runestone.academy/ns/books/published/thinkcspy/index.html
@Machine_learn
https://runestone.academy/ns/books/published/thinkcspy/index.html
@Machine_learn
No learning rates needed: Introducing SALSA - Stable Armijo Line Search Adaptation
🖥 Github: https://github.com/themody/no-learning-rates-needed-introducing-salsa-stable-armijo-line-search-adaptation
📕 Paper: https://arxiv.org/abs/2407.20650v1
🚀 Dataset: https://paperswithcode.com/dataset/cifar-10
✅ @Machine_learn
🖥 Github: https://github.com/themody/no-learning-rates-needed-introducing-salsa-stable-armijo-line-search-adaptation
📕 Paper: https://arxiv.org/abs/2407.20650v1
🚀 Dataset: https://paperswithcode.com/dataset/cifar-10
Please open Telegram to view this post
VIEW IN TELEGRAM
https://research.google/blog/scaling-hierarchical-agglomerative-clustering-to-trillion-edge-graphs/
Please open Telegram to view this post
VIEW IN TELEGRAM
Pixart-Sigma, the first high-quality, transformer-based image generation training framework!
🖥 Github: https://github.com/PixArt-alpha/PixArt-sigma
🔥Demo: https://huggingface.co/spaces/PixArt-alpha/PixArt-Sigma
✅ @Machine_learn
🔥Demo: https://huggingface.co/spaces/PixArt-alpha/PixArt-Sigma
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - PixArt-alpha/PixArt-sigma: PixArt-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image Generation
PixArt-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image Generation - PixArt-alpha/PixArt-sigma
Recall-Oriented-CL-Framework
🖥 Github: https://github.com/bigdata-inha/recall-oriented-cl-framework
📕 Paper: https://arxiv.org/pdf/2403.03082v1.pdf
🔥Dataset: https://paperswithcode.com/dataset/cifar-10
✨ Tasks: https://paperswithcode.com/task/continual-learning
✅ @Machine_learn
🔥Dataset: https://paperswithcode.com/dataset/cifar-10
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - bigdata-inha/recall-oriented-cl-framework
Contribute to bigdata-inha/recall-oriented-cl-framework development by creating an account on GitHub.
با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)
جهت تهیه می تونین به ایدی بنده مراجعه کنین
@Raminmousa
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)
جهت تهیه می تونین به ایدی بنده مراجعه کنین
@Raminmousa
Graph Diffusion Policy Optimization
🖥 Github: https://github.com/sail-sg/gdpo
📕 Paper: https://arxiv.org/pdf/2402.16302v1.pdf
🔥Dataset: https://paperswithcode.com/dataset/zinc
✨ Tasks: https://paperswithcode.com/task/graph-generation
✅ @Machine_learn
🔥Dataset: https://paperswithcode.com/dataset/zinc
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Very cool cookbook here
PDF extractor, calendar agent, data analyst, financial agent & more
docs: https://docs.cohere.com/docs/multi-step-tool-use
cookbook: https://github.com/cohere-ai/notebooks/tree/main?tab=readme-ov-file#agents
✅ @Machine_learn
PDF extractor, calendar agent, data analyst, financial agent & more
docs: https://docs.cohere.com/docs/multi-step-tool-use
cookbook: https://github.com/cohere-ai/notebooks/tree/main?tab=readme-ov-file#agents
Please open Telegram to view this post
VIEW IN TELEGRAM
Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing
🖥 Github: https://github.com/wangkai930418/DPL
📕 Paper: https://arxiv.org/abs/2405.01496v1
🔥Dataset: https://neurips.cc/virtual/2023/poster/72801
@Machine_learn
🔥Dataset: https://neurips.cc/virtual/2023/poster/72801
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Recurrent Neural Networks Learn to Store and Generate Sequences
using Non-Linear Representations
#RNN
https://arxiv.org/pdf/2408.10920
@Machine_learn
using Non-Linear Representations
#RNN
https://arxiv.org/pdf/2408.10920
@Machine_learn
MER 2024: Semi-Supervised Learning, Noise Robustness, and Open-Vocabulary Multimodal Emotion Recognition
🖥 Github: https://github.com/zeroqiaoba/mertools
📕 Paper: https://arxiv.org/abs/2404.17113v1
🔥Dataset: https://paperswithcode.com/dataset/voxceleb2
@Machine_learn
🔥Dataset: https://paperswithcode.com/dataset/voxceleb2
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
GitHub
GitHub - zeroQiaoba/MERTools: Toolkits for Multimodal Emotion Recognition
Toolkits for Multimodal Emotion Recognition. Contribute to zeroQiaoba/MERTools development by creating an account on GitHub.