Telegram Web Link
با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم.

1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)

جهت تهیه می تونین به ایدی بنده مراجعه کنین

@Raminmousa
با عرض سلام جايگاه دوم از اين مقاله باقي مونده دوستاني كه نياز دارن ني تونن با بنده در ارتباط باشند
@Raminmousa
🎓 Multi-HMR: Multi-Person Whole-Body Human Mesh Recovery in a Single Shot.

Github
Paper
Dataset

@Machine_learn
Introduction to Generative AI.pdf
12.5 MB
Book: 📚Introduction to Generative AI
Authors: Numa Dhamani and Maggie Engler
ISBN: Null
year: 2023
pages: 318
Tags: #AI
@Machine_learn
Fundamentals of Data Science.pdf
12.4 MB
Book: 📚Fundamentals of Data Science Theory and Practice
Authors: Jugal K. Kalita Dhruba K. Bhattacharyya Swarup Roy
ISBN: 978-0-323-91778-0
year: 2023
pages: 336
Tags: #Data_science
@Machine_learn
Which trend do you choose?
Anonymous Poll
87%
Data science
16%
web development
13%
network
با عرض سلام
مقاله ي فوق به صورت كامل نوشته شده است. نيازمند شخصي هستيم كه بتونه اكسپت مقاله رو بگيره و هزينه هاي سرور رو پرداخت كنه(جايگاه ٢: co-author).

@Raminmousa
ZHEM: An Integrated Data Processing Framework for Pretraining Foundation Models

🖥 Github: https://github.com/emanual20/zhem

📕 Paper: https://arxiv.org/pdf/2402.16358v1.pdf

🔥Dataset: https://paperswithcode.com/dataset/wikitext-2

@Machine_learn
🖼 Differential Diffusion: Giving Each Pixel Its Strength 🔥

code: github.com/exx8/differential-diffusion
page: differential-diffusion.github.io
paper: arxiv.org/abs/2306.00950

@Machine_learn
aipython.pdf
2.4 MB
Book: 📚Python code for Artificial Intelligence Foundations of Computational Agents
Authors: David L. Poole and Alan K. Mackworth
year: 2024
pages: 392
Tags: #Python
@Machine_learn
2024/11/16 13:33:40
Back to Top
HTML Embed Code: