Telegram Web Link
CSMeD: Citation Screening Meta-Dataset for systematic review automation evaluation

πŸ–₯ Github: https://github.com/wojciechkusa/systematic-review-datasets

πŸ“• Paper: https://arxiv.org/pdf/2311.12474v1.pdf

✨ Tasks: https://paperswithcode.com/task/question-answering

πŸ”₯Datasets: https://paperswithcode.com/dataset/blurb

@Machine_learn
πŸ”₯ Diffusion360: Seamless 360 Degree Panoramic Image Generation based on Diffusion Models.

πŸ–₯ Code: https://github.com/archerfmy/sd-t2i-360panoimage

πŸ“š Paper: https://arxiv.org/abs/2311.13141v1

πŸ”— Dataset: https://paperswithcode.com/dataset/sun360

@Machine_learn
πŸ”₯2❀1
β™Ÿ ChessVision - A dataset for logically coherent multi-label classification.


πŸ–₯ Github: https://github.com/espressovi/chessvisionchallenge

πŸ“• Paper: https://arxiv.org/abs/2311.12610

πŸ”₯Datasets: https://zenodo.org/records/8278015

@Machine_learn
πŸ”₯5πŸ‘2
Hyperparameter Optimization and Combined Data Sampling Techniques in Machine Learning for Customer Churn Prediction: A Comparative Analysis


πŸ“• Paper: https://www.mdpi.com/2227-7080/11/6/167

πŸ”₯ Dataset: https://www.kaggle.com/code/rinichristy/customer-churn-prediction-2020

@Machine_learn
❀4
Data Mesh Delivering Data-Driven Value at Scale.pdf
5.3 MB
Book: Data Mesh
Authors: Zhamak Dehghani
ISBN: Null
year: 2021
pages: 90
Tags: #Data_Mesh
@Machine_learn
πŸ‘3❀1
Ψ¨Ψ§ ΨΉΨ±ΨΆ Ψ³Ω„Ψ§Ω… Ψ§ΫŒΩ† Ω…Ω‚Ψ§Ω„Ω‡ ΨͺΨ§ دو روز Ψ―ΫŒΪ―Ω‡ Ψ³Ψ§Ψ¨ΫŒΩ…Ψͺ Ω…ΫŒΨ΄Ω‡ و ارکایوش Ω‡Ω… ΨͺΨ§ Ϋ±Ϋ΅ روز Ψ―ΫŒΪ―Ω‡ Ϊ†Ψ§Ψ― Ω…ΫŒΨ΄Ω‡. ΨͺΩ†Ω‡Ψ§ Ψ―Ωˆβ€ŒΨ¬Ψ§ΫŒΪ―Ψ§Ω‡ Ψ§Ψ²Ψ΄ Ψ¨Ψ§Ω‚ΫŒ Ω…ΩˆΩ†Ψ―Ω‡...!
This media is not supported in your browser
VIEW IN TELEGRAM
πŸ₯‡ TokenCompose, a text-to-image latent diffusion model trained with fine-grained grounding objectives

πŸ–₯ Code: https://github.com/mlpc-ucsd/TokenCompose

πŸ† Website: https://mlpc-ucsd.github.io/TokenCompose/

πŸ“š Paper: https://huggingface.co/papers/2312.03626

@Machine_learn
πŸ‘4
Exploring the potential of channel interactions for image restoration

πŸ–₯ Github: https://github.com/c-yn/ChaIR

πŸ“• Paper: https://www.sciencedirect.com/science/article/abs/pii/S0950705123009061

πŸ”₯ Dataset: https://paperswithcode.com/dataset/reside

✨ Tasks: https://paperswithcode.com/task/deblurring

@Machine_learn
πŸ–₯ Self-conditioned Image Generation via Generating Representations

A new benchmark in class-unconditional image generation.

πŸ–₯ Github: https://github.com/LTH14/rcg

πŸ“š Paper: https://arxiv.org/abs/2312.03701

🌟 Dataset: https://paperswithcode.com/dataset/imagenet

@Machine_learn
πŸ‘1
Repaint123: Fast and High-quality One Image to 3D Generation with Progressive Controllable 2D Repainting

πŸ–₯ Github: https://github.com/junwuzhang19/repaint123

πŸ“• Paper: https://arxiv.org/pdf/2312.13271v1.pdf

πŸ”₯ Dataset: https://paperswithcode.com/dataset/nerf

@Machine_learn
πŸ‘2
πŸ‘2
This media is not supported in your browser
VIEW IN TELEGRAM
⚑️ LLM360 - framework for open-source LLMs to foster transparency, trust, and collaborative research


πŸ–₯ Code: https://short.llm360.ai/amber-code

⚑️ Model: https://short.llm360.ai/amber-model

πŸ–ŒMetrics: https://short.llm360.ai/amber-metrics

πŸ“šData: https://short.llm360.ai/amber-data

@Machine_learn
πŸ‘2
LaneSegNet: Map Learning with Lane Segment Perception for Autonomous Driving

πŸ–₯ Github: https://github.com/OpenDriveLab/LaneSegNet

πŸ“• Paper: https://arxiv.org/abs/2312.16108v1

πŸ”₯Datasets: https://paperswithcode.com/dataset/openlane-v2


@Machine_learn
2025/07/09 04:33:59
Back to Top
HTML Embed Code: