CSMeD: Citation Screening Meta-Dataset for systematic review automation evaluation
π₯ Github: https://github.com/wojciechkusa/systematic-review-datasets
π Paper: https://arxiv.org/pdf/2311.12474v1.pdf
β¨ Tasks: https://paperswithcode.com/task/question-answering
π₯Datasets: https://paperswithcode.com/dataset/blurb
@Machine_learn
π₯ Github: https://github.com/wojciechkusa/systematic-review-datasets
π Paper: https://arxiv.org/pdf/2311.12474v1.pdf
β¨ Tasks: https://paperswithcode.com/task/question-answering
π₯Datasets: https://paperswithcode.com/dataset/blurb
@Machine_learn
π₯ Diffusion360: Seamless 360 Degree Panoramic Image Generation based on Diffusion Models.
π₯ Code: https://github.com/archerfmy/sd-t2i-360panoimage
π Paper: https://arxiv.org/abs/2311.13141v1
π Dataset: https://paperswithcode.com/dataset/sun360
@Machine_learn
π₯ Code: https://github.com/archerfmy/sd-t2i-360panoimage
π Paper: https://arxiv.org/abs/2311.13141v1
π Dataset: https://paperswithcode.com/dataset/sun360
@Machine_learn
π₯2β€1
Probabilistic-Forecast-Reconciliation-with-DL
π₯ Github: https://github.com/guanyu0316/Probabilistic-Forecast-Reconciliation-with-DL
π Paper: https://arxiv.org/pdf/2311.12279v1.pdf
β¨ Tasks: https://paperswithcode.com/task/time-series-1
@Machine_learn
π₯ Github: https://github.com/guanyu0316/Probabilistic-Forecast-Reconciliation-with-DL
π Paper: https://arxiv.org/pdf/2311.12279v1.pdf
β¨ Tasks: https://paperswithcode.com/task/time-series-1
@Machine_learn
β€4
β ChessVision - A dataset for logically coherent multi-label classification.
π₯ Github: https://github.com/espressovi/chessvisionchallenge
π Paper: https://arxiv.org/abs/2311.12610
π₯Datasets: https://zenodo.org/records/8278015
@Machine_learn
π₯ Github: https://github.com/espressovi/chessvisionchallenge
π Paper: https://arxiv.org/abs/2311.12610
π₯Datasets: https://zenodo.org/records/8278015
@Machine_learn
π₯5π2
Hyperparameter Optimization and Combined Data Sampling Techniques in Machine Learning for Customer Churn Prediction: A Comparative Analysis
π Paper: https://www.mdpi.com/2227-7080/11/6/167
π₯ Dataset: https://www.kaggle.com/code/rinichristy/customer-churn-prediction-2020
@Machine_learn
π Paper: https://www.mdpi.com/2227-7080/11/6/167
π₯ Dataset: https://www.kaggle.com/code/rinichristy/customer-churn-prediction-2020
@Machine_learn
β€4
BatchER
π₯ Github: https://github.com/fmh1art/batcher
π Paper: https://arxiv.org/pdf/2312.03987v1.pdf
β¨ Tasks: https://paperswithcode.com/task/data-integration
@Machine_learn
π₯ Github: https://github.com/fmh1art/batcher
π Paper: https://arxiv.org/pdf/2312.03987v1.pdf
β¨ Tasks: https://paperswithcode.com/task/data-integration
@Machine_learn
π1
Syn-Rep-Learn
π₯ Github: https://github.com/google-research/syn-rep-learn
π Paper: https://arxiv.org/pdf/2312.04567v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
π₯ Github: https://github.com/google-research/syn-rep-learn
π Paper: https://arxiv.org/pdf/2312.04567v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
β€1π1
Ψ¨Ψ§ ΨΉΨ±ΨΆ Ψ³ΩΨ§Ω
Ψ§ΫΩ Ω
ΩΨ§ΩΩ ΨͺΨ§ Ψ―Ω Ψ±ΩΨ² Ψ―ΫΪ―Ω Ψ³Ψ§Ψ¨ΫΩ
Ψͺ Ω
ΫΨ΄Ω Ω Ψ§Ψ±Ϊ©Ψ§ΫΩΨ΄ ΩΩ
ΨͺΨ§ Ϋ±Ϋ΅ Ψ±ΩΨ² Ψ―ΫΪ―Ω ΪΨ§Ψ― Ω
ΫΨ΄Ω. ΨͺΩΩΨ§ Ψ―ΩβΨ¬Ψ§ΫΪ―Ψ§Ω Ψ§Ψ²Ψ΄ Ψ¨Ψ§ΩΫ Ω
ΩΩΨ―Ω...!
This media is not supported in your browser
VIEW IN TELEGRAM
π₯ TokenCompose, a text-to-image latent diffusion model trained with fine-grained grounding objectives
π₯ Code: https://github.com/mlpc-ucsd/TokenCompose
π Website: https://mlpc-ucsd.github.io/TokenCompose/
π Paper: https://huggingface.co/papers/2312.03626
@Machine_learn
π₯ Code: https://github.com/mlpc-ucsd/TokenCompose
π Website: https://mlpc-ucsd.github.io/TokenCompose/
π Paper: https://huggingface.co/papers/2312.03626
@Machine_learn
π4
Exploring the potential of channel interactions for image restoration
π₯ Github: https://github.com/c-yn/ChaIR
π Paper: https://www.sciencedirect.com/science/article/abs/pii/S0950705123009061
π₯ Dataset: https://paperswithcode.com/dataset/reside
β¨ Tasks: https://paperswithcode.com/task/deblurring
@Machine_learn
π₯ Github: https://github.com/c-yn/ChaIR
π Paper: https://www.sciencedirect.com/science/article/abs/pii/S0950705123009061
π₯ Dataset: https://paperswithcode.com/dataset/reside
β¨ Tasks: https://paperswithcode.com/task/deblurring
@Machine_learn
π₯ Self-conditioned Image Generation via Generating Representations
A new benchmark in class-unconditional image generation.
π₯ Github: https://github.com/LTH14/rcg
π Paper: https://arxiv.org/abs/2312.03701
π Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
A new benchmark in class-unconditional image generation.
π₯ Github: https://github.com/LTH14/rcg
π Paper: https://arxiv.org/abs/2312.03701
π Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
π1
Repaint123: Fast and High-quality One Image to 3D Generation with Progressive Controllable 2D Repainting
π₯ Github: https://github.com/junwuzhang19/repaint123
π Paper: https://arxiv.org/pdf/2312.13271v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
π₯ Github: https://github.com/junwuzhang19/repaint123
π Paper: https://arxiv.org/pdf/2312.13271v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
π2
An Empirical Study on Compliance with Ranking Transparency in the Software Documentation of EU Online Platforms
π₯ Github: https://github.com/francesco-sovrano/automating-regulatory-compliance-an-empirical-study-on-ranking-transparency-of-eu-online-platforms
π Paper: https://arxiv.org/pdf/2312.14794v1.pdf
β¨ Tasks: https://paperswithcode.com/task/information-retrieval
@Machine_learn
π₯ Github: https://github.com/francesco-sovrano/automating-regulatory-compliance-an-empirical-study-on-ranking-transparency-of-eu-online-platforms
π Paper: https://arxiv.org/pdf/2312.14794v1.pdf
β¨ Tasks: https://paperswithcode.com/task/information-retrieval
@Machine_learn
π2
This media is not supported in your browser
VIEW IN TELEGRAM
β‘οΈ LLM360 - framework for open-source LLMs to foster transparency, trust, and collaborative research
π₯ Code: https://short.llm360.ai/amber-code
β‘οΈ Model: https://short.llm360.ai/amber-model
πMetrics: https://short.llm360.ai/amber-metrics
πData: https://short.llm360.ai/amber-data
@Machine_learn
π₯ Code: https://short.llm360.ai/amber-code
β‘οΈ Model: https://short.llm360.ai/amber-model
πMetrics: https://short.llm360.ai/amber-metrics
πData: https://short.llm360.ai/amber-data
@Machine_learn
π2
πViStripformer (Video-Stripformer)
π₯ Github: https://github.com/pp00704831/ViStripformer
π Paper: https://arxiv.org/pdf/2312.14502v1.pdf
β¨ Tasks: https://paperswithcode.com/task/deblurring
π₯Datasets: https://paperswithcode.com/dataset/gopro
@Machine_learn
π₯ Github: https://github.com/pp00704831/ViStripformer
π Paper: https://arxiv.org/pdf/2312.14502v1.pdf
β¨ Tasks: https://paperswithcode.com/task/deblurring
π₯Datasets: https://paperswithcode.com/dataset/gopro
@Machine_learn
LaneSegNet: Map Learning with Lane Segment Perception for Autonomous Driving
π₯ Github: https://github.com/OpenDriveLab/LaneSegNet
π Paper: https://arxiv.org/abs/2312.16108v1
π₯Datasets: https://paperswithcode.com/dataset/openlane-v2
@Machine_learn
π₯ Github: https://github.com/OpenDriveLab/LaneSegNet
π Paper: https://arxiv.org/abs/2312.16108v1
π₯Datasets: https://paperswithcode.com/dataset/openlane-v2
@Machine_learn