Please open Telegram to view this post
VIEW IN TELEGRAM
lbdl.pdf
4.4 MB
Book: The Little Book of
Deep Learning
Authors: François Fleuret
ISBN: Null
year: 2023
pages: 168
Tags:#DL
@Machine_learn
Deep Learning
Authors: François Fleuret
ISBN: Null
year: 2023
pages: 168
Tags:#DL
@Machine_learn
Human-Guided Complexity-Controlled Abstractions
🖥 Github: https://github.com/mycal-tucker/human-guided-abstractions
📕 Paper: https://arxiv.org/pdf/2310.17550v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/fashion-mnist
@Machine_learn
🖥 Github: https://github.com/mycal-tucker/human-guided-abstractions
📕 Paper: https://arxiv.org/pdf/2310.17550v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/fashion-mnist
@Machine_learn
🕵️ Detecting Pretraining Data from Large Language Models
🖥 Github: https://github.com/swj0419/detect-pretrain-code
📕 Paper: https://arxiv.org/pdf/2310.16789.pdf
📘 WikiMIA Benchmark:
⏩ Project: https://swj0419.github.io/detect-pretrain.github.io/
@Machine_learn
🖥 Github: https://github.com/swj0419/detect-pretrain-code
📕 Paper: https://arxiv.org/pdf/2310.16789.pdf
📘 WikiMIA Benchmark:
⏩ Project: https://swj0419.github.io/detect-pretrain.github.io/
@Machine_learn
DialogLLMScenic
🖥 Github: https://github.com/avmb/dialogllmscenic
📕 Paper: https://arxiv.org/pdf/2310.17372v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/carla
⭐ Tasks: https://paperswithcode.com/task/self-driving-cars
@Machine_learn
🖥 Github: https://github.com/avmb/dialogllmscenic
📕 Paper: https://arxiv.org/pdf/2310.17372v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/carla
⭐ Tasks: https://paperswithcode.com/task/self-driving-cars
@Machine_learn
Foundational-Python-for-Data-Science_bibis.ir.pdf
16.2 MB
Book: Foundation Python for Data Scientist
Authors: Kennedy R
ISBN: Null
year: 202
pages: 686
Tags:#Python
@Machine_learn
Authors: Kennedy R
ISBN: Null
year: 202
pages: 686
Tags:#Python
@Machine_learn
Bilingual Corpus Mining and Multistage Fine-Tuning for Improving Machine Translation of Lecture Transcripts
🖥 Github: https://github.com/shyyhs/CourseraParallelCorpusMining
📕 Paper: https://arxiv.org/abs/2311.03696v1
🔥 Datasets: https://paperswithcode.com/dataset/aspec
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ LLMRec: Large Language Models with Graph Augmentation for Recommendation
LLMRec - это новый фреймворк и датасет, улучшающий рекомендательные системы путем применения простых, но эффективных стратегий дополнения графов на основе LLM.
🖥 Github: https://github.com/hkuds/llmrec
📕 Paper: https://arxiv.org/abs/2311.00423v1
⏩ Project: https://llmrec.github.io/
🌐 Dataset: https://llmrec.github.io/#
@Machine_learn
LLMRec - это новый фреймворк и датасет, улучшающий рекомендательные системы путем применения простых, но эффективных стратегий дополнения графов на основе LLM.
🖥 Github: https://github.com/hkuds/llmrec
📕 Paper: https://arxiv.org/abs/2311.00423v1
⏩ Project: https://llmrec.github.io/
🌐 Dataset: https://llmrec.github.io/#
@Machine_learn
Deep Learning.pdf
47.3 MB
Book: Deep Learning Foundations and Concepts
Authors: Christopher M. Bishop
ISBN: 978-3-031-45468-4
year: 2023
pages: 656
Tags: #DL
@Machine_learn
Authors: Christopher M. Bishop
ISBN: 978-3-031-45468-4
year: 2023
pages: 656
Tags: #DL
@Machine_learn
🚀 Introducing YOLO-NAS Pose : A Game-Changer in Pose Estimation 🚀
🖥 Github: https://github.com/Deci-AI/super-gradients
📕 Notebook: https://colab.research.google.com/drive/1O4N5Vbzv0rfkT81LQidPktX8RtoS5A40
🚀 Demo: https://huggingface.co/spaces/Deci/YOLO-NAS-Pose-Demo
🌐 Colab: https://colab.research.google.com/drive/1agLj0aGx48C_rZPrTkeA18kuncack6lF
@Machine_learn
🖥 Github: https://github.com/Deci-AI/super-gradients
📕 Notebook: https://colab.research.google.com/drive/1O4N5Vbzv0rfkT81LQidPktX8RtoS5A40
🚀 Demo: https://huggingface.co/spaces/Deci/YOLO-NAS-Pose-Demo
🌐 Colab: https://colab.research.google.com/drive/1agLj0aGx48C_rZPrTkeA18kuncack6lF
@Machine_learn
✨ Feature Selection for Deep Tabular Models
🐱 Github: https://github.com/vcherepanova/tabular-feature-selection
📕 Paper: https://arxiv.org/pdf/2311.05877v1.pdf
⭐ Tasks: https://paperswithcode.com/task/feature-selection
@Machine_learn
🐱 Github: https://github.com/vcherepanova/tabular-feature-selection
📕 Paper: https://arxiv.org/pdf/2311.05877v1.pdf
⭐ Tasks: https://paperswithcode.com/task/feature-selection
@Machine_learn
🏆 LLaMA2-Accessory: An Open-source Toolkit for LLM Development
🐱 Github: https://github.com/alpha-vllm/llama2-accessory
🚀 Demo: http://imagebind-llm.opengvlab.com/
📕 Paper: https://arxiv.org/abs/2311.07575v1
⏩ Project: llama2-accessory.readthedocs.io/
⭐ Dataset: https://paperswithcode.com/dataset/vsr
@Machine_learn
🐱 Github: https://github.com/alpha-vllm/llama2-accessory
🚀 Demo: http://imagebind-llm.opengvlab.com/
📕 Paper: https://arxiv.org/abs/2311.07575v1
⏩ Project: llama2-accessory.readthedocs.io/
⭐ Dataset: https://paperswithcode.com/dataset/vsr
@Machine_learn
Quantized Distillation for Driver Activity Recognition
🖥 Github: https://github.com/calvintanama/qd-driver-activity-reco
📕 Paper: https://arxiv.org/pdf/2311.05970v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/drive-act
✨ Tasks: https://paperswithcode.com/task/activity-recognition
@Machine_learn
🖥 Github: https://github.com/calvintanama/qd-driver-activity-reco
📕 Paper: https://arxiv.org/pdf/2311.05970v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/drive-act
✨ Tasks: https://paperswithcode.com/task/activity-recognition
@Machine_learn
neuronalenetze-en-zeta2-2col-dkrieselcom.pdf
5.6 MB
Book: A brief introduction to Neural Networks
Authors: David Kriesel
ISBN: Null
year: 2005
pages: 242
Tags: #ANN
@Machine_learn
Authors: David Kriesel
ISBN: Null
year: 2005
pages: 242
Tags: #ANN
@Machine_learn
Hyperparameter Optimization and Combined Data Sampling Techniques in Machine Learning for Customer Churn Prediction: A Comparative Analysis
📕 Paper: https://www.preprints.org/manuscript/202308.1478/v4
🔥 Dataset: https://www.kaggle.com/code/rinichristy/customer-churn-prediction-2020
@Machine_learn
📕 Paper: https://www.preprints.org/manuscript/202308.1478/v4
🔥 Dataset: https://www.kaggle.com/code/rinichristy/customer-churn-prediction-2020
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
🇺🇿 Introducing Emu Video and Emu Edit, our latest generative AI research milestones
🚀 Blog: https://ai.meta.com/blog/emu-text-to-video-generation-image-editing-research/
⭐️Project page: https://emu-edit.metademolab.com
📌Paper: https://emu-edit.metademolab.com/assets/emu_edit.pdf
@Machine_learn
🚀 Blog: https://ai.meta.com/blog/emu-text-to-video-generation-image-editing-research/
⭐️Project page: https://emu-edit.metademolab.com
📌Paper: https://emu-edit.metademolab.com/assets/emu_edit.pdf
@Machine_learn
🪐 ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems
🐱 Github: https://github.com/stanford-futuredata/ares
📕 Paper: https://arxiv.org/abs/2311.09476
⏩ Dataset: https://paperswithcode.com/dataset/kilt
@Machine_learn
🐱 Github: https://github.com/stanford-futuredata/ares
📕 Paper: https://arxiv.org/abs/2311.09476
⏩ Dataset: https://paperswithcode.com/dataset/kilt
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
🌦 Makani: Massively parallel training of machine-learning based weather and climate models
🐱Github: https://github.com/NVIDIA/makani
📕Blog: https://developer.nvidia.com/blog/modeling-earths-atmosphere-with-spherical-fourier-neural-operators/
⏩Dataset: https://github.com/NVIDIA/makani/tree/main/datasets
@Machine_learn
🐱Github: https://github.com/NVIDIA/makani
📕Blog: https://developer.nvidia.com/blog/modeling-earths-atmosphere-with-spherical-fourier-neural-operators/
⏩Dataset: https://github.com/NVIDIA/makani/tree/main/datasets
@Machine_learn