Telegram Web Link
جایگاه ۲ و ۳ این مقاله باقی مونده. از دوستان کسی خواست در خدمتم
@Raminmousa
Final Edit-Sha.pdf
1.3 MB
Title: The IndRNN Capsule Approach for Persian Multi-Domain Sentiment Analysis
Authors:
ramin mousa
Mohammad Ali Dadgostarnia
Amir Olfati Malamiri
Elham Behnam
Shahram Miri Kelaniki
doi:10.22105/jarie.2023.345352.1477

@raminmousa
@Machine_learn
🦩 Woodpecker: Hallucination Correction for Multimodal Large Language Models

🖥 Github: https://github.com/bradyfu/woodpecker

📕 Paper: https://arxiv.org/abs/2310.15110v1

Demo: https://21527a47f03813481c.gradio.live/

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
lbdl.pdf
4.4 MB
Book: The Little Book of
Deep Learning
Authors: François Fleuret
ISBN: Null
year: 2023
pages: 168
Tags:#DL
@Machine_learn
🕵️ Detecting Pretraining Data from Large Language Models


🖥 Github: https://github.com/swj0419/detect-pretrain-code

📕 Paper: https://arxiv.org/pdf/2310.16789.pdf

📘 WikiMIA Benchmark:

Project: https://swj0419.github.io/detect-pretrain.github.io/

@Machine_learn
Foundational-Python-for-Data-Science_bibis.ir.pdf
16.2 MB
Book: Foundation Python for Data Scientist
Authors: Kennedy R
ISBN: Null
year: 202
pages: 686
Tags:#Python
@Machine_learn
Bilingual Corpus Mining and Multistage Fine-Tuning for Improving Machine Translation of Lecture Transcripts

🖥 Github: https://github.com/shyyhs/CourseraParallelCorpusMining

📕 Paper: https://arxiv.org/abs/2311.03696v1

🔥 Datasets: https://paperswithcode.com/dataset/aspec

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ LLMRec: Large Language Models with Graph Augmentation for Recommendation

LLMRec - это новый фреймворк и датасет, улучшающий рекомендательные системы путем применения простых, но эффективных стратегий дополнения графов на основе LLM.

🖥 Github: https://github.com/hkuds/llmrec

📕 Paper: https://arxiv.org/abs/2311.00423v1

Project: https://llmrec.github.io/

🌐 Dataset: https://llmrec.github.io/#

@Machine_learn
Deep Learning.pdf
47.3 MB
Book: Deep Learning Foundations and Concepts
Authors: Christopher M. Bishop
ISBN: 978-3-031-45468-4
year: 2023
pages: 656
Tags: #DL
@Machine_learn
2025/02/23 11:34:46
Back to Top
HTML Embed Code: