Telegram Web Link
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models

πŸ–₯ Github: https://github.com/dvlab-research/longlora

πŸ“• Paper: https://arxiv.org/pdf/2309.12307v1.pdf

πŸ”₯ Dataset: https://paperswithcode.com/dataset/pg-19

@Machine_learn
βž• fastMONAI: A low-code deep learning library for medical image analysis

Simplifying deep learning for medical imaging.


git clone https://github.com/MMIV-ML/fastMONAI

πŸ–₯ Github: https://github.com/MMIV-ML/fastMONAI

Project: https://fastmonai.no

πŸ“• Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203

πŸ–₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb

@Machine_learn
30574277.pdf
20.5 MB
Book: Quantum Mechanics and
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Privacy-preserving in-context learning with differentially private few-shot generation

πŸ–₯ Github: https://github.com/microsoft/dp-few-shot-generation

πŸ“• Paper: https://arxiv.org/pdf/2309.11765v1.pdf

πŸ”₯ Dataset: https://paperswithcode.com/dataset/ag-news

@Machine_learn
Developing Apps With GPT-4 and ChatGPT (2023).pdf
3 MB
Book: Developing Apps with GPT-4 and
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
✏️ Deep Geometrized Cartoon Line Inbetweening

Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.

πŸ–₯ Github: https://github.com/lisiyao21/animeinbet

β˜‘οΈ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5

πŸ“• Paper: https://arxiv.org/pdf/2309.16643v1.pdf

⭐️ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing

@Machine_learn
Oreilly.Generative.Deep.Learning.pdf
57.9 MB
Book: Generative Deep Learning
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
Class Incremental Learning via Likelihood Ratio Based Task Prediction

πŸ–₯ Github: https://github.com/linhaowei1/tplr

πŸ“• Paper: https://arxiv.org/pdf/2309.15048v1.pdf

πŸ”₯ Dataset: https://paperswithcode.com/dataset/cifar-10

@Machine_learn
β˜‘οΈ Efficient Streaming Language Models with Attention Sinks

StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.

πŸ–₯ Github: https://github.com/mit-han-lab/streaming-llm

πŸ“• Paper: http://arxiv.org/abs/2309.17453

⭐️ Dataset: https://paperswithcode.com/dataset/pg-19

@Machine_learn
βœ…οΈ T3Bench: Benchmarking Current Progress in Text-to-3D Generation



πŸ–₯ Github: https://github.com/THU-LYJ-Lab/T3Bench

πŸ“• Paper: https://arxiv.org/abs/2310.02977v1

⭐️ Dataset: https://paperswithcode.com/dataset/nerf

@Machine_learn
πŸ’» Graph Structure Learning Benchmark (GSLB)


pip install GSLB

πŸ–₯ Github: https://github.com/gsl-benchmark/gslb

πŸ“• Paper: https://arxiv.org/abs/2310.05163v1

⭐️ Paper collection: https://github.com/GSL-Benchmark/Awesome-Graph-Structure-Learning

@Machine_learn
Wiley_Artificial_Intelligence_Programming_with_Python_From_Zero.pdf
37.2 MB
Book: ArtificialIntelligence Programming
withPython F R O MZ E R OT OH E R O
Authors: Perry Xiao
ISBN: 978-1-119-82094-9 (ebk)
year: 2022
pages: 716
Tags:#AI #DL
@Machine_learn
🌽 Harnessing Administrative Data Inventories to Create a Reliable Transnational Reference Database for Crop Type Monitoring


πŸ–₯ Github: https://github.com/maja601/eurocrops

πŸ“• Paper: https://arxiv.org/pdf/2310.06393v1.pdf

⭐️ Dataset: https://syncandshare.lrz.de/getlink/fiAD95cTrXbnKMrdZYrFFcN8/

@Machine_learn
βœ… Mini-DALLE3: Interactive Text to Image by Prompting Large Language Models


πŸ–₯ Github: https://github.com/Zeqiang-Lai/Mini-DALLE3

πŸ“• Paper: https://arxiv.org/abs/2310.07653v1

⭐️ Dataset: https://paperswithcode.com/dataset/mmlu

@Machine_learn
AG3D: Learning to Generate 3D Avatars from 2D Image Collections (ICCV 2023)



πŸ–₯ Github: https://github.com/zj-dong/AG3D

πŸ“• Paper: https://arxiv.org/abs/2305.02312

πŸš€Video: https://youtu.be/niP1YhJXEBE

⭐️ Project: https://zj-dong.github.io/AG3D/

@Machine_learn
Python.for.Scientists.pdf
7.1 MB
Book: Python for Scientists
Third Edition
Authors: JOHN M. STEWART
ISBN: 978-1-119-82094-9 (ebk)
year: 2023
pages: 301
Tags:#Python
@Machine_learn
2025/07/07 06:59:28
Back to Top
HTML Embed Code: