LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
π₯ Github: https://github.com/dvlab-research/longlora
π Paper: https://arxiv.org/pdf/2309.12307v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
π₯ Github: https://github.com/dvlab-research/longlora
π Paper: https://arxiv.org/pdf/2309.12307v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
β fastMONAI: A low-code deep learning library for medical image analysis
Simplifying deep learning for medical imaging.
π₯ Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
π Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
π₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
Simplifying deep learning for medical imaging.
git clone https://github.com/MMIV-ML/fastMONAI
π₯ Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
π Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
π₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
30574277.pdf
20.5 MB
Book: Quantum Mechanics and
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Privacy-preserving in-context learning with differentially private few-shot generation
π₯ Github: https://github.com/microsoft/dp-few-shot-generation
π Paper: https://arxiv.org/pdf/2309.11765v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
π₯ Github: https://github.com/microsoft/dp-few-shot-generation
π Paper: https://arxiv.org/pdf/2309.11765v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
Developing Apps With GPT-4 and ChatGPT (2023).pdf
3 MB
Book: Developing Apps with GPT-4 and
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
βοΈ Deep Geometrized Cartoon Line Inbetweening
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
π₯ Github: https://github.com/lisiyao21/animeinbet
βοΈ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
π Paper: https://arxiv.org/pdf/2309.16643v1.pdf
βοΈ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
π₯ Github: https://github.com/lisiyao21/animeinbet
βοΈ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
π Paper: https://arxiv.org/pdf/2309.16643v1.pdf
βοΈ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
Oreilly.Generative.Deep.Learning.pdf
57.9 MB
Book: Generative Deep Learning
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
Class Incremental Learning via Likelihood Ratio Based Task Prediction
π₯ Github: https://github.com/linhaowei1/tplr
π Paper: https://arxiv.org/pdf/2309.15048v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
π₯ Github: https://github.com/linhaowei1/tplr
π Paper: https://arxiv.org/pdf/2309.15048v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
Atom2D
π₯ Github: https://github.com/vincentx15/atom2d
π Paper: https://arxiv.org/pdf/2309.16519v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/atom3d
@Machine_learn
π₯ Github: https://github.com/vincentx15/atom2d
π Paper: https://arxiv.org/pdf/2309.16519v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/atom3d
@Machine_learn
βοΈ Efficient Streaming Language Models with Attention Sinks
StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.
π₯ Github: https://github.com/mit-han-lab/streaming-llm
π Paper: http://arxiv.org/abs/2309.17453
βοΈ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.
π₯ Github: https://github.com/mit-han-lab/streaming-llm
π Paper: http://arxiv.org/abs/2309.17453
βοΈ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
π€ GenSim: Generating Robotic Simulation Tasks via Large Language Models
π₯ Github: https://github.com/liruiw/gensim
βοΈ Project: https://liruiw.github.io/gensim
π Paper: https://arxiv.org/abs/2310.01361v1
β Dataset: https://huggingface.co/datasets/Gen-Sim/Gen-Sim
βοΈ Demos: https://huggingface.co/spaces/Gen-Sim/Gen-Sim
@Machine_learn
π₯ Github: https://github.com/liruiw/gensim
βοΈ Project: https://liruiw.github.io/gensim
π Paper: https://arxiv.org/abs/2310.01361v1
β Dataset: https://huggingface.co/datasets/Gen-Sim/Gen-Sim
βοΈ Demos: https://huggingface.co/spaces/Gen-Sim/Gen-Sim
@Machine_learn
β
οΈ T3Bench: Benchmarking Current Progress in Text-to-3D Generation
π₯ Github: https://github.com/THU-LYJ-Lab/T3Bench
π Paper: https://arxiv.org/abs/2310.02977v1
βοΈ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
π₯ Github: https://github.com/THU-LYJ-Lab/T3Bench
π Paper: https://arxiv.org/abs/2310.02977v1
βοΈ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
π» Graph Structure Learning Benchmark (GSLB)
pip install GSLB
π₯ Github: https://github.com/gsl-benchmark/gslb
π Paper: https://arxiv.org/abs/2310.05163v1
βοΈ Paper collection: https://github.com/GSL-Benchmark/Awesome-Graph-Structure-Learning
@Machine_learn
pip install GSLB
π₯ Github: https://github.com/gsl-benchmark/gslb
π Paper: https://arxiv.org/abs/2310.05163v1
βοΈ Paper collection: https://github.com/GSL-Benchmark/Awesome-Graph-Structure-Learning
@Machine_learn
G4SATBench
π₯ Github: https://github.com/zhaoyu-li/g4satbench
π Paper: https://arxiv.org/pdf/2309.16941v1.pdf
π₯ Tasks: https://paperswithcode.com/task/benchmarking
@Machine_learn
π₯ Github: https://github.com/zhaoyu-li/g4satbench
π Paper: https://arxiv.org/pdf/2309.16941v1.pdf
π₯ Tasks: https://paperswithcode.com/task/benchmarking
@Machine_learn
Wiley_Artificial_Intelligence_Programming_with_Python_From_Zero.pdf
37.2 MB
Book: ArtificialIntelligence Programming
withPython F R O MZ E R OT OH E R O
Authors: Perry Xiao
ISBN: 978-1-119-82094-9 (ebk)
year: 2022
pages: 716
Tags:#AI #DL
@Machine_learn
withPython F R O MZ E R OT OH E R O
Authors: Perry Xiao
ISBN: 978-1-119-82094-9 (ebk)
year: 2022
pages: 716
Tags:#AI #DL
@Machine_learn
Code for MIMO Activation Function
π₯ Github: https://github.com/ljy9912/mimo_nn
π Paper: https://arxiv.org/pdf/2309.17194v1.pdf
π₯ Datasets: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
π₯ Github: https://github.com/ljy9912/mimo_nn
π Paper: https://arxiv.org/pdf/2309.17194v1.pdf
π₯ Datasets: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
π½ Harnessing Administrative Data Inventories to Create a Reliable Transnational Reference Database for Crop Type Monitoring
π₯ Github: https://github.com/maja601/eurocrops
π Paper: https://arxiv.org/pdf/2310.06393v1.pdf
βοΈ Dataset: https://syncandshare.lrz.de/getlink/fiAD95cTrXbnKMrdZYrFFcN8/
@Machine_learn
π₯ Github: https://github.com/maja601/eurocrops
π Paper: https://arxiv.org/pdf/2310.06393v1.pdf
βοΈ Dataset: https://syncandshare.lrz.de/getlink/fiAD95cTrXbnKMrdZYrFFcN8/
@Machine_learn
β
Mini-DALLE3: Interactive Text to Image by Prompting Large Language Models
π₯ Github: https://github.com/Zeqiang-Lai/Mini-DALLE3
π Paper: https://arxiv.org/abs/2310.07653v1
βοΈ Dataset: https://paperswithcode.com/dataset/mmlu
@Machine_learn
π₯ Github: https://github.com/Zeqiang-Lai/Mini-DALLE3
π Paper: https://arxiv.org/abs/2310.07653v1
βοΈ Dataset: https://paperswithcode.com/dataset/mmlu
@Machine_learn
AG3D: Learning to Generate 3D Avatars from 2D Image Collections (ICCV 2023)
π₯ Github: https://github.com/zj-dong/AG3D
π Paper: https://arxiv.org/abs/2305.02312
πVideo: https://youtu.be/niP1YhJXEBE
βοΈ Project: https://zj-dong.github.io/AG3D/
@Machine_learn
π₯ Github: https://github.com/zj-dong/AG3D
π Paper: https://arxiv.org/abs/2305.02312
πVideo: https://youtu.be/niP1YhJXEBE
βοΈ Project: https://zj-dong.github.io/AG3D/
@Machine_learn
Python.for.Scientists.pdf
7.1 MB
Book: Python for Scientists
Third Edition
Authors: JOHN M. STEWART
ISBN: 978-1-119-82094-9 (ebk)
year: 2023
pages: 301
Tags:#Python
@Machine_learn
Third Edition
Authors: JOHN M. STEWART
ISBN: 978-1-119-82094-9 (ebk)
year: 2023
pages: 301
Tags:#Python
@Machine_learn