LLM_Fine_Tuning_Molecular_Properties
π₯ Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
π Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
π₯ Dataset: https://paperswithcode.com/dataset/moleculenet
@Machine_learn
π₯ Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
π Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
π₯ Dataset: https://paperswithcode.com/dataset/moleculenet
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
InstructionERC
π₯ Github: https://github.com/LIN-SHANG/InstructERC
π Paper: https://arxiv.org/pdf/2309.11911v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
π₯ Github: https://github.com/LIN-SHANG/InstructERC
π Paper: https://arxiv.org/pdf/2309.11911v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
Forwarded from Eng. Hussein Sheikho
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
β Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0
β Main Channel:
https://www.tg-me.com/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
β Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0
β Main Channel:
https://www.tg-me.com/DataScienceM
π£ Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition
π₯ Github: https://github.com/wenet-e2e/wespeaker
π Paper: https://arxiv.org/abs/2309.11730v1
β© Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
βοΈ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
pip3 install wespeakerruntime
π₯ Github: https://github.com/wenet-e2e/wespeaker
π Paper: https://arxiv.org/abs/2309.11730v1
β© Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
βοΈ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
π BayesDLL: Bayesian Deep Learning Library
New Bayesian neural network library for PyTorch for large-scale deep network
π₯ Github: https://github.com/samsunglabs/bayesdll
π Paper: https://arxiv.org/abs/2309.12928v1
βοΈ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
New Bayesian neural network library for PyTorch for large-scale deep network
π₯ Github: https://github.com/samsunglabs/bayesdll
π Paper: https://arxiv.org/abs/2309.12928v1
βοΈ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
Artificial Intelligence Class 10 (2023).pdf
20.8 MB
Book: ARTIFICIAL INTELLIGENCE (SUBJECT CODE 417) CLASS β 3
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
π₯ Github: https://github.com/dvlab-research/longlora
π Paper: https://arxiv.org/pdf/2309.12307v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
π₯ Github: https://github.com/dvlab-research/longlora
π Paper: https://arxiv.org/pdf/2309.12307v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
β fastMONAI: A low-code deep learning library for medical image analysis
Simplifying deep learning for medical imaging.
π₯ Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
π Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
π₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
Simplifying deep learning for medical imaging.
git clone https://github.com/MMIV-ML/fastMONAI
π₯ Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
π Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
π₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
30574277.pdf
20.5 MB
Book: Quantum Mechanics and
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Privacy-preserving in-context learning with differentially private few-shot generation
π₯ Github: https://github.com/microsoft/dp-few-shot-generation
π Paper: https://arxiv.org/pdf/2309.11765v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
π₯ Github: https://github.com/microsoft/dp-few-shot-generation
π Paper: https://arxiv.org/pdf/2309.11765v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
Developing Apps With GPT-4 and ChatGPT (2023).pdf
3 MB
Book: Developing Apps with GPT-4 and
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
βοΈ Deep Geometrized Cartoon Line Inbetweening
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
π₯ Github: https://github.com/lisiyao21/animeinbet
βοΈ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
π Paper: https://arxiv.org/pdf/2309.16643v1.pdf
βοΈ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
π₯ Github: https://github.com/lisiyao21/animeinbet
βοΈ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
π Paper: https://arxiv.org/pdf/2309.16643v1.pdf
βοΈ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
Oreilly.Generative.Deep.Learning.pdf
57.9 MB
Book: Generative Deep Learning
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
Class Incremental Learning via Likelihood Ratio Based Task Prediction
π₯ Github: https://github.com/linhaowei1/tplr
π Paper: https://arxiv.org/pdf/2309.15048v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
π₯ Github: https://github.com/linhaowei1/tplr
π Paper: https://arxiv.org/pdf/2309.15048v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/cifar-10
@Machine_learn
Atom2D
π₯ Github: https://github.com/vincentx15/atom2d
π Paper: https://arxiv.org/pdf/2309.16519v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/atom3d
@Machine_learn
π₯ Github: https://github.com/vincentx15/atom2d
π Paper: https://arxiv.org/pdf/2309.16519v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/atom3d
@Machine_learn
βοΈ Efficient Streaming Language Models with Attention Sinks
StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.
π₯ Github: https://github.com/mit-han-lab/streaming-llm
π Paper: http://arxiv.org/abs/2309.17453
βοΈ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence length without any fine-tuning.
π₯ Github: https://github.com/mit-han-lab/streaming-llm
π Paper: http://arxiv.org/abs/2309.17453
βοΈ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
π€ GenSim: Generating Robotic Simulation Tasks via Large Language Models
π₯ Github: https://github.com/liruiw/gensim
βοΈ Project: https://liruiw.github.io/gensim
π Paper: https://arxiv.org/abs/2310.01361v1
β Dataset: https://huggingface.co/datasets/Gen-Sim/Gen-Sim
βοΈ Demos: https://huggingface.co/spaces/Gen-Sim/Gen-Sim
@Machine_learn
π₯ Github: https://github.com/liruiw/gensim
βοΈ Project: https://liruiw.github.io/gensim
π Paper: https://arxiv.org/abs/2310.01361v1
β Dataset: https://huggingface.co/datasets/Gen-Sim/Gen-Sim
βοΈ Demos: https://huggingface.co/spaces/Gen-Sim/Gen-Sim
@Machine_learn
β
οΈ T3Bench: Benchmarking Current Progress in Text-to-3D Generation
π₯ Github: https://github.com/THU-LYJ-Lab/T3Bench
π Paper: https://arxiv.org/abs/2310.02977v1
βοΈ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
π₯ Github: https://github.com/THU-LYJ-Lab/T3Bench
π Paper: https://arxiv.org/abs/2310.02977v1
βοΈ Dataset: https://paperswithcode.com/dataset/nerf
@Machine_learn
π» Graph Structure Learning Benchmark (GSLB)
pip install GSLB
π₯ Github: https://github.com/gsl-benchmark/gslb
π Paper: https://arxiv.org/abs/2310.05163v1
βοΈ Paper collection: https://github.com/GSL-Benchmark/Awesome-Graph-Structure-Learning
@Machine_learn
pip install GSLB
π₯ Github: https://github.com/gsl-benchmark/gslb
π Paper: https://arxiv.org/abs/2310.05163v1
βοΈ Paper collection: https://github.com/GSL-Benchmark/Awesome-Graph-Structure-Learning
@Machine_learn