Forwarded from Eng. Hussein Sheikho 👨💻
The Data Science and Python channel is for researchers and advanced programmers
https://www.tg-me.com/DataScienceT
https://www.tg-me.com/DataScienceT
🧬NeuralFuse
🖥 Github: https://github.com/ibm/neuralfuse
⏩ Paper: https://arxiv.org/pdf/2306.16869v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
🖥 Github: https://github.com/ibm/neuralfuse
⏩ Paper: https://arxiv.org/pdf/2306.16869v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
🤳Filtered-Guided Diffusion
🖥 Github: https://github.com/jaclyngu/filteredguideddiffusion
⏩ Paper: https://arxiv.org/pdf/2306.17141v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/afhq
@Machine_learn
🖥 Github: https://github.com/jaclyngu/filteredguideddiffusion
⏩ Paper: https://arxiv.org/pdf/2306.17141v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/afhq
@Machine_learn
Recognize Anything: A Strong Image Tagging Model
Get ready for a breakthrough in the realm of AI: introducing the Recognize Anything Model (RAM), a powerful new model that is set to revolutionize image tagging. RAM, a titan in the world of large computer vision models, astoundingly exhibits the zero-shot ability to recognize any common category with an impressive level of accuracy. Shattering traditional approaches, RAM employs a unique paradigm for image tagging, utilizing large-scale image-text pairs for training instead of relying on tedious manual annotations.
Paper link: https://arxiv.org/abs/2306.03514
Code link: https://github.com/xinyu1205/recognize-anything
Project link: https://recognize-anything.github.io/
A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-ram
#deeplearning #cv #imagecaptioning
@Machine_lean
Recognize Anything: A Strong Image Tagging Model
Get ready for a breakthrough in the realm of AI: introducing the Recognize Anything Model (RAM), a powerful new model that is set to revolutionize image tagging. RAM, a titan in the world of large computer vision models, astoundingly exhibits the zero-shot ability to recognize any common category with an impressive level of accuracy. Shattering traditional approaches, RAM employs a unique paradigm for image tagging, utilizing large-scale image-text pairs for training instead of relying on tedious manual annotations.
Paper link: https://arxiv.org/abs/2306.03514
Code link: https://github.com/xinyu1205/recognize-anything
Project link: https://recognize-anything.github.io/
A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-ram
#deeplearning #cv #imagecaptioning
@Machine_lean
This media is not supported in your browser
VIEW IN TELEGRAM
ContainerGym: A Real-World Reinforcement Learning Benchmark for Resource Allocation ♻️
🖥 Github: https://github.com/pendu/containergym
⏩ Paper: https://arxiv.org/pdf/2307.02991v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/openai-gym
@Machine_learn
🖥 Github: https://github.com/pendu/containergym
⏩ Paper: https://arxiv.org/pdf/2307.02991v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/openai-gym
@Machine_learn
Benchmarking Test-Time Adaptation against Distribution Shifts in Image Classification
🖥 Github: https://github.com/yuyongcan/benchmark-tta
⏩ Paper: https://arxiv.org/pdf/2307.03133v1.pdf
💨 Dataset: https://paperswithcode.com/imagenet
@Machine_learn
🖥 Github: https://github.com/yuyongcan/benchmark-tta
⏩ Paper: https://arxiv.org/pdf/2307.03133v1.pdf
💨 Dataset: https://paperswithcode.com/imagenet
@Machine_learn
Modeling and Simulation in Python.pdf
8.1 MB
Book: MODELING AND SIMULATION
IN PYTHON AN INTRODUSTENNINGERSCIENTISTS
Authors: Allen B. Downey
ISBN: 978-1-7185-0217-8
year: 2023
pages: 344
Tags:#Python #"Modeling
@Machine_learn
IN PYTHON AN INTRODUSTENNINGERSCIENTISTS
Authors: Allen B. Downey
ISBN: 978-1-7185-0217-8
year: 2023
pages: 344
Tags:#Python #"Modeling
@Machine_learn
با عرض سلام دو پکیچ یادگیری ماشین(یادگیری پایتون، تنسورفلو،کراس) و یادگیری عمیق پیشرفته با تخفیف ۷۰٪ برای دوستان گذاشتیم. جهت خرید می تونین به ایدی بنده پیام بدین.
@Raminmousa
@Raminmousa
🌆Censored Sampling of Diffusion Models Using 3 Minutes of Human Feedback
🖥 Github: https://github.com/tetrzim/diffusion-human-feedback
⏩ Paper: https://arxiv.org/pdf/2307.02770v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
🖥 Github: https://github.com/tetrzim/diffusion-human-feedback
⏩ Paper: https://arxiv.org/pdf/2307.02770v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
AnimateDiff
Effective framework to animate most of existing personalized text-to-image models once for all, saving the efforts in model-specific tuning.
🖥 Github: https://github.com/guoyww/animatediff/
🖥 Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb
📕 Paper: https://arxiv.org/abs/2307.04725
🚀 Project: https://animatediff.github.io/
@Machine_learn
Effective framework to animate most of existing personalized text-to-image models once for all, saving the efforts in model-specific tuning.
🖥 Github: https://github.com/guoyww/animatediff/
🖥 Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb
📕 Paper: https://arxiv.org/abs/2307.04725
🚀 Project: https://animatediff.github.io/
@Machine_learn
Neural Video Depth Stabilizer (ICCV2023) 🚀🚀🚀
🖥 Github: https://github.com/raymondwang987/nvds
⏩ Paper: https://arxiv.org/pdf/2307.08695v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/wsvd
@Machine_learn
🖥 Github: https://github.com/raymondwang987/nvds
⏩ Paper: https://arxiv.org/pdf/2307.08695v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/wsvd
@Machine_learn
Forwarded from Eng. Hussein Sheikho 👨💻
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0
✅ Main Channel:
https://www.tg-me.com/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
✅ Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0
✅ Main Channel:
https://www.tg-me.com/DataScienceM
FLASK: Fine-grained Language Model Evaluation Based on Alignment Skill Sets
🖥 Github: https://github.com/kaistai/flask
⏩ Paper: https://arxiv.org/pdf/2307.10928v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/gsm8k
@Machine_learn
🖥 Github: https://github.com/kaistai/flask
⏩ Paper: https://arxiv.org/pdf/2307.10928v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/gsm8k
@Machine_learn
Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation of rPPG
🖥 Github: https://github.com/remotebiosensing/rppg
📕 Paper: https://arxiv.org/abs/2307.12644v1
🔥 Dataset: https://paperswithcode.com/dataset/ubfc-rppg
@Machine_learn
🖥 Github: https://github.com/remotebiosensing/rppg
📕 Paper: https://arxiv.org/abs/2307.12644v1
🔥 Dataset: https://paperswithcode.com/dataset/ubfc-rppg
@Machine_learn
29733376.pdf
3.4 MB
Book: Test Your Skills In Python
SECOND EDITION
Authors: SHIVANI GOEL
ISBN: 978-93-5551-181-2
year: 2023
pages: 308
Tags:#Python
@Machine_learn
SECOND EDITION
Authors: SHIVANI GOEL
ISBN: 978-93-5551-181-2
year: 2023
pages: 308
Tags:#Python
@Machine_learn
Awesome-Align-LLM-Human
🖥 Github: https://github.com/garyyufei/alignllmhumansurvey
📕 Paper: https://arxiv.org/pdf/2307.12966v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/gsm8k
@Machine_learn
🖥 Github: https://github.com/garyyufei/alignllmhumansurvey
📕 Paper: https://arxiv.org/pdf/2307.12966v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/gsm8k
@Machine_learn
SVDFormer: Complementing Point Cloud via Self-view Augmentation and Self-structure Dual-generator
🖥 Github: https://github.com/czvvd/svdformer
⏩ Paper: https://arxiv.org/pdf/2307.08492v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/shapenet
@Machine_learn
🖥 Github: https://github.com/czvvd/svdformer
⏩ Paper: https://arxiv.org/pdf/2307.08492v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/shapenet
@Machine_learn