The 5 Best Places To Host Your Data Science Portfolio
https://www.kdnuggets.com/2022/07/5-best-places-host-data-science-portfolio.html
@Machine_learn
https://www.kdnuggets.com/2022/07/5-best-places-host-data-science-portfolio.html
@Machine_learn
Grounding Visual Representations with Texts for Domain Generalization
Github: https://github.com/mswzeus/gvrt
Paper: https://arxiv.org/abs/2207.10285v1
Dataset: https://paperswithcode.com/dataset/pacs
@Machine_learn
Github: https://github.com/mswzeus/gvrt
Paper: https://arxiv.org/abs/2207.10285v1
Dataset: https://paperswithcode.com/dataset/pacs
@Machine_learn
🏎 Instance Shadow Detection with A Single-Stage Detector
Deep framework, and an evaluation metric to approach this new task.
Github: https://github.com/stevewongv/InstanceShadowDetection
Instance Shadow Detection: https://github.com/stevewongv/SSIS
Video: https://www.youtube.com/watch?v=p0b_2SsFypw
Colab: https://colab.research.google.com/drive/1y9UpS5uA1YuoMyvYVzcKL4ltA_FDu_x0?usp=sharing
Paper: https://arxiv.org/abs/2207.04614v1
Datasets: https://paperswithcode.com/dataset/soba
@Machine_learn
Deep framework, and an evaluation metric to approach this new task.
Github: https://github.com/stevewongv/InstanceShadowDetection
Instance Shadow Detection: https://github.com/stevewongv/SSIS
Video: https://www.youtube.com/watch?v=p0b_2SsFypw
Colab: https://colab.research.google.com/drive/1y9UpS5uA1YuoMyvYVzcKL4ltA_FDu_x0?usp=sharing
Paper: https://arxiv.org/abs/2207.04614v1
Datasets: https://paperswithcode.com/dataset/soba
@Machine_learn
aipython.pdf
1.4 MB
Python code for Artificial Intelligence: Foundations of Computational Agents
David L. Poole and Alan K. Mackworth
#book #2022
@Machine_learn
David L. Poole and Alan K. Mackworth
#book #2022
@Machine_learn
Computer_Vision_and_Augmented_Reality_in_iOS_OpenCV_and_ARKit_Applications.pdf
8.8 MB
Computer Vision and Augmented Reality in iOS
OpenCV and ARKit Applications
Ahmed Fathi Bekhit
#book #2022
@Machine_learn
OpenCV and ARKit Applications
Ahmed Fathi Bekhit
#book #2022
@Machine_learn
با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_________
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)
جهت تهیه می تونین به ایدی بنده مراجعه کنین
@Raminmousa
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_________
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)
جهت تهیه می تونین به ایدی بنده مراجعه کنین
@Raminmousa
Machine learning books and papers pinned «با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد 1: introduction to machine learning 2: Regression (linear and non-linear) 3: Tensorflow…»
Class-incremental Novel Class Discovery
Github: https://github.com/oatmealliu/class-incd
Paper: https://arxiv.org/abs/2207.08605v1
Dataset: https://paperswithcode.com/dataset/tiny-imagenet
@Machine_learn
Github: https://github.com/oatmealliu/class-incd
Paper: https://arxiv.org/abs/2207.08605v1
Dataset: https://paperswithcode.com/dataset/tiny-imagenet
@Machine_learn
🎯 Object-Compositional Neural Implicit Surfaces
Github: https://github.com/qianyiwu/objsdf
Paper: https://arxiv.org/abs/2207.09686v1
Project: https://qianyiwu.github.io/objectsdf/
Dataset: https://paperswithcode.com/dataset/scannet
@Machine_learn
Github: https://github.com/qianyiwu/objsdf
Paper: https://arxiv.org/abs/2207.09686v1
Project: https://qianyiwu.github.io/objectsdf/
Dataset: https://paperswithcode.com/dataset/scannet
@Machine_learn
GitHub
GitHub - QianyiWu/objsdf: :t-rex: [ECCV‘22] Pytorch implementation of 'Object-Compositional Neural Implicit Surfaces'
:t-rex: [ECCV‘22] Pytorch implementation of 'Object-Compositional Neural Implicit Surfaces' - QianyiWu/objsdf
Distance Learner: Incorporating Manifold Prior to Model Training
Github: https://github.com/microsoft/distance-learner
Paper: https://arxiv.org/abs/2207.06888v1
Project: https://fast-vid2vid.github.io/
@Machine_learn
Github: https://github.com/microsoft/distance-learner
Paper: https://arxiv.org/abs/2207.06888v1
Project: https://fast-vid2vid.github.io/
@Machine_learn
GitHub
GitHub - microsoft/distance-learner: Official implementation for "Distance Learner: Incorporating Manifold Prior to Model Training"
Official implementation for "Distance Learner: Incorporating Manifold Prior to Model Training" - microsoft/distance-learner
Forwarded from Machine learning books and papers
با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_________
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)
جهت تهیه می تونین به ایدی بنده مراجعه کنین
@Raminmousa
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_________
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)
جهت تهیه می تونین به ایدی بنده مراجعه کنین
@Raminmousa
Language Modelling with Pixels
PIXEL is a language model that operates on text rendered as images, fully removing the need for a fixed vocabulary.
Github: https://github.com/xplip/pixel
Paper: https://arxiv.org/abs/2207.06991v1
Dataset: https://paperswithcode.com/dataset/glue
Pretrained: https://huggingface.co/Team-PIXEL/pixel-base
@Machine_learn
PIXEL is a language model that operates on text rendered as images, fully removing the need for a fixed vocabulary.
Github: https://github.com/xplip/pixel
Paper: https://arxiv.org/abs/2207.06991v1
Dataset: https://paperswithcode.com/dataset/glue
Pretrained: https://huggingface.co/Team-PIXEL/pixel-base
@Machine_learn
سلام با توجه به مساله فیلترینگ دوستانی که نیاز به مشاوره و یا سوالی داشتند می تونن به شماره بنده پیام بدن یا تماس بگیرن 00989333900804
Machine learning books and papers pinned «سلام با توجه به مساله فیلترینگ دوستانی که نیاز به مشاوره و یا سوالی داشتند می تونن به شماره بنده پیام بدن یا تماس بگیرن 00989333900804»
🔲 TensorStore
Novel open-source C++ / #Python library for storage/manipulation of high-dim data
⚙️ Github
🗒 Tutorial
📌 Google AI
🦾 Docs
@Machine_learn
Novel open-source C++ / #Python library for storage/manipulation of high-dim data
⚙️ Github
🗒 Tutorial
📌 Google AI
🦾 Docs
@Machine_learn
GitHub
GitHub - google/tensorstore: Library for reading and writing large multi-dimensional arrays.
Library for reading and writing large multi-dimensional arrays. - google/tensorstore
🎓 YATO: Yet Another deep learning based Text analysis Open toolkit
⚙️ Github
📋 Paper
📌 Dataset
@Machine_learn
pip install ylab-yato
⚙️ Github
📋 Paper
📌 Dataset
@Machine_learn