⛩ XBound-Former: Toward Cross-scale Boundary Modeling in Transformers
Github: https://github.com/naiyugao/panopticdepth
Paper: https://arxiv.org/abs/2206.00806v1
Dataset: https://paperswithcode.com/dataset/kvasir-seg
@Machine_learn
Github: https://github.com/naiyugao/panopticdepth
Paper: https://arxiv.org/abs/2206.00806v1
Dataset: https://paperswithcode.com/dataset/kvasir-seg
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
Chinese students ride bicycles to build their own drones.
This bike is the latest artificial intelligence technology that allows it to learn "like a human". Able to identify and track. () (() () (
This operation requires 100 accounts per second! The speed and efficiency of artificial intelligence is so high that these calculations can be performed with high accuracy. And make the bike smart enough to act like a human and make decisions.
+ In short, I can tell you that you can say with this bike, go get two loaves of bread and come back. It will do it for you.
https://www.tg-me.com/Machine_learn
This bike is the latest artificial intelligence technology that allows it to learn "like a human". Able to identify and track. () (() () (
This operation requires 100 accounts per second! The speed and efficiency of artificial intelligence is so high that these calculations can be performed with high accuracy. And make the bike smart enough to act like a human and make decisions.
+ In short, I can tell you that you can say with this bike, go get two loaves of bread and come back. It will do it for you.
https://www.tg-me.com/Machine_learn
با عرض سلام موضوعات پيشنهادي تز
برای دوستانی که نیاز دارن در ادامه اورده شده است.
master thesis
پيش بيني بار كوتاه مدت با استفاده از رويكردهاي يادگيري تركيبي
طبقه بندي رضايت مشتريان بانكي و موسسات اعتباري با استفاده از رويكردهاي بازگشتي
طبقه بندي اخبار جعل با استفاده از رويكرد تنسور سه بعدي و bert
پيشبيني قيمت سهام با استفاده از اطلاعات تويتر و ماركت
پيش بيني قيمت crypto با استفاده از اطلاعات hashrate
phd thesis
بهبود رویکردهای یادگیری عمیق بر روی اخبار جعل و شایعات
بهبود رویکرد های یادگیری عمیق ترکیبی جهت دستیابی به پورتوفولی بهینه
بهبود رویکردهای ترکیبی یادگیری عمیق برای طبقه بندی crypto با استفاده از اطلاعات hashrate
ارائه رویکردهای مبتنی بر وزن دهی غیر تصادفی در یادگیری عمیق
بهبود یادگیری انتقالی در سری زمانی
ارائه مدل های انتقالی برای طبقه بندی های سری زمانی
جهت مشاوره موضوعات می تونین با بنده در ارتباط باشین
@Raminmousa
برای دوستانی که نیاز دارن در ادامه اورده شده است.
master thesis
پيش بيني بار كوتاه مدت با استفاده از رويكردهاي يادگيري تركيبي
طبقه بندي رضايت مشتريان بانكي و موسسات اعتباري با استفاده از رويكردهاي بازگشتي
طبقه بندي اخبار جعل با استفاده از رويكرد تنسور سه بعدي و bert
پيشبيني قيمت سهام با استفاده از اطلاعات تويتر و ماركت
پيش بيني قيمت crypto با استفاده از اطلاعات hashrate
phd thesis
بهبود رویکردهای یادگیری عمیق بر روی اخبار جعل و شایعات
بهبود رویکرد های یادگیری عمیق ترکیبی جهت دستیابی به پورتوفولی بهینه
بهبود رویکردهای ترکیبی یادگیری عمیق برای طبقه بندی crypto با استفاده از اطلاعات hashrate
ارائه رویکردهای مبتنی بر وزن دهی غیر تصادفی در یادگیری عمیق
بهبود یادگیری انتقالی در سری زمانی
ارائه مدل های انتقالی برای طبقه بندی های سری زمانی
جهت مشاوره موضوعات می تونین با بنده در ارتباط باشین
@Raminmousa
🎆 Optimizing Relevance Maps of Vision Transformers Improves Robustness
This code allows to finetune the explainability maps of Vision Transformers to enhance robustness.
Github: https://github.com/hila-chefer/robustvit
Colab: https://colab.research.google.com/github/hila-chefer/RobustViT/blob/master/RobustViT.ipynb
Paper: https://arxiv.org/abs/2206.01161
Dataset: https://github.com/UnsupervisedSemanticSegmentation/ImageNet-S
@Machine_learn
This code allows to finetune the explainability maps of Vision Transformers to enhance robustness.
Github: https://github.com/hila-chefer/robustvit
Colab: https://colab.research.google.com/github/hila-chefer/RobustViT/blob/master/RobustViT.ipynb
Paper: https://arxiv.org/abs/2206.01161
Dataset: https://github.com/UnsupervisedSemanticSegmentation/ImageNet-S
@Machine_learn
Invertible Neural Networks for Graph Prediction
Github: https://github.com/hamrel-cxu/invertible-graph-neural-network-ignn
Paper: https://arxiv.org/abs/2206.01163v1
@Machine_learn
Github: https://github.com/hamrel-cxu/invertible-graph-neural-network-ignn
Paper: https://arxiv.org/abs/2206.01163v1
@Machine_learn
Quantum Advantage in Learning from Experiments
http://ai.googleblog.com/2022/06/quantum-advantage-in-learning-from.html
@Machine_learn
http://ai.googleblog.com/2022/06/quantum-advantage-in-learning-from.html
@Machine_learn
research.google
Quantum Advantage in Learning from Experiments
Posted by Jarrod McClean, Staff Research Scientist, Google Quantum AI, and Hsin-Yuan Huang, Graduate Student, Caltech In efforts to learn about the...
End-to-end Generative Pre-training for Multimodal Video Captioning
http://ai.googleblog.com/2022/06/end-to-end-generative-pre-training-for.html
@Machine_learn
http://ai.googleblog.com/2022/06/end-to-end-generative-pre-training-for.html
@Machine_learn
research.google
End-to-end Generative Pre-training for Multimodal Video Captioning
Posted by Paul Hongsuck Seo and Arsha Nagrani, Research Scientists, Google Research, Perception Team Multimodal video captioning systems utilize bo...
The StatQuest Illustrated Guide To Machine Learning
by stamphet phd ,josh
The StatQuest Illustrated Guide To Machine Learning by stamphet phd ,josh
#book _req @Raminmousa
by stamphet phd ,josh
The StatQuest Illustrated Guide To Machine Learning by stamphet phd ,josh
#book _req @Raminmousa
LIMoE: Learning Multiple Modalities with One Sparse Mixture of Experts Model
http://ai.googleblog.com/2022/06/limoe-learning-multiple-modalities-with.html
@Machine_learn
http://ai.googleblog.com/2022/06/limoe-learning-multiple-modalities-with.html
@Machine_learn
research.google
LIMoE: Learning Multiple Modalities with One Sparse Mixture-of-Experts Model
Posted by Basil Mustafa, Research Software Engineer and Carlos Riquelme, Research Scientist, Google Research, Brain team Sparse models stand out am...
UniSRec
The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.
Github: https://github.com/rucaibox/unisrec
Paper: https://arxiv.org/abs/2206.05941v1
Google Drive: https://drive.google.com/drive/folders/1Uik0fMk4oquV_bS9lXTZuExAYbIDkEMW?usp=sharing
@Machine_learn
The proposed approach utilizes the associated description text of items to learn transferable representations across different recommendation scenarios.
Github: https://github.com/rucaibox/unisrec
Paper: https://arxiv.org/abs/2206.05941v1
Google Drive: https://drive.google.com/drive/folders/1Uik0fMk4oquV_bS9lXTZuExAYbIDkEMW?usp=sharing
@Machine_learn
يكي از مهم ترين چالش هاي طبقه بندي سند اين كه مدل ها به صورت ٢ بعدي به متن و طبقه بندي ان مي پردازند، در واقع مكان قرار گيري جمله در سند كاملا ناديده گرفته ميشه. در اين مقاله ساختار تنسور سه بعدي را پيشنهاد دادم كه جملات در سند، كلمات در جملات و بردار تعبيه شده ي ان ها را در نظر ميگيره.
به زودي فايل كامل مقاله رو در كانال ميزارم و تقريبا فرايند ثبتش تموم شده.
@Raminmousa
به زودي فايل كامل مقاله رو در كانال ميزارم و تقريبا فرايند ثبتش تموم شده.
@Raminmousa
Identifying Disfluencies in Natural Speech
http://ai.googleblog.com/2022/06/identifying-disfluencies-in-natural.html
@Machine_learn
http://ai.googleblog.com/2022/06/identifying-disfluencies-in-natural.html
@Machine_learn
research.google
Identifying Disfluencies in Natural Speech
Posted by Dan Walker and Dan Liebling, Software Engineers, Google Research People don’t write in the same way that they speak. Written language is ...
DEEP LEARNING INTERVIEWS REAL-WORLD DEEP LEARNING INTERVIEW PROBLEMS & SOLUTIONS
#book #DL
book
@Machine_learn
link: https://arxiv.org/pdf/2201.00650.pdf
#book #DL
book
@Machine_learn
link: https://arxiv.org/pdf/2201.00650.pdf
Enabling Creative Expression with Concept Activation Vectors
http://ai.googleblog.com/2022/07/enabling-creative-expression-with.html
@Machine_learn
http://ai.googleblog.com/2022/07/enabling-creative-expression-with.html
@Machine_learn
research.google
Enabling Creative Expression with Concept Activation Vectors
Posted by Been Kim, Research Scientist, Google Research, Brain Team, and Alison Lentz, Senior Staff Strategist, Google Research, Mural Team Advance...
👁🗨 CVNets: A library for training computer vision networks
Improved model, MobileViTv2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection.
Github: https://github.com/apple/ml-cvnets
Examples: https://github.com/apple/ml-cvnets/blob/main/docs/source/en/models
Paper: https://arxiv.org/abs/2206.02680v1
Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
Improved model, MobileViTv2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection.
Github: https://github.com/apple/ml-cvnets
Examples: https://github.com/apple/ml-cvnets/blob/main/docs/source/en/models
Paper: https://arxiv.org/abs/2206.02680v1
Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
Contextual Rephrasing in Google Assistant
http://ai.googleblog.com/2022/05/contextual-rephrasing-in-google.html
@Machine_learn
http://ai.googleblog.com/2022/05/contextual-rephrasing-in-google.html
@Machine_learn
research.google
Contextual Rephrasing in Google Assistant
Posted by Aurelien Boffy, Senior Staff Software Engineer, and Roberto Pieraccini, Engineering Director, Google Assistant When people converse with ...