Forwarded from Omid
I gladly announce my first online course on #Statistics and #Mathematics for #MachineLearning and #DeepLearning.
The course will be in English, QA sessions with instructor will be in Turkish, Azerbaijani , or English. TA sessions will be in English.
This is the first course of tribology courses to help attendees to capture foundations and mathematics behind ML,DL models.
The courses are listed as follow:
1. Statistics Foundation for ML
2. Introduction to Statistical Learning for ML
3. Advanced Statistical Learning for DL
The course starts on 15 Jan 2022, at 13:00 to 15:00 (Istanbul time):
Course Fee:
Free for unemployed attendees. :)
200 USD for employed candidates :).
Course contents:
https://lnkd.in/dcXKxUjE
Course Registration:
https://lnkd.in/dMpzMfMG
Please kindly share with the ones who are interested.
The course will be in English, QA sessions with instructor will be in Turkish, Azerbaijani , or English. TA sessions will be in English.
This is the first course of tribology courses to help attendees to capture foundations and mathematics behind ML,DL models.
The courses are listed as follow:
1. Statistics Foundation for ML
2. Introduction to Statistical Learning for ML
3. Advanced Statistical Learning for DL
The course starts on 15 Jan 2022, at 13:00 to 15:00 (Istanbul time):
Course Fee:
Free for unemployed attendees. :)
200 USD for employed candidates :).
Course contents:
https://lnkd.in/dcXKxUjE
Course Registration:
https://lnkd.in/dMpzMfMG
Please kindly share with the ones who are interested.
lnkd.in
LinkedIn
This link will take you to a page that’s not on LinkedIn
Brain tumor detection and segmentation from MRI images using CNN and Unet models.
The CNN model is used to detect whether a tumor is there or not. After 15 epochs of training, the calculated accuracy is about 99.6%.
The U-net model is used to segment tumors in MRI images of the brain. After 10 epochs of training, the calculated accuracy is about 98%.
These deep neural networks are implemented with Keras functional API. Use the trained models to detect and segment tumors on brain MRI images. The result is satisfactory.
You can download my U-net trained model from: "https://drive.google.com/drive/folders/1qt7l3HOGIwOguWsMKc5fuwG2NGiGOucf?usp=sharing" and CNN trained model from: "https://drive.google.com/drive/folders/1fXFzMwNG6HrbNp6-GASAgeybeSB3JWCd?usp=sharing".
To access the codes, refer to my GitHub.
Github: https://github.com/AryaKoureshi/Brain-tumor-detection
Website: https://aryakoureshi.github.io/project/BT_detection
@Machine_learn
The CNN model is used to detect whether a tumor is there or not. After 15 epochs of training, the calculated accuracy is about 99.6%.
The U-net model is used to segment tumors in MRI images of the brain. After 10 epochs of training, the calculated accuracy is about 98%.
These deep neural networks are implemented with Keras functional API. Use the trained models to detect and segment tumors on brain MRI images. The result is satisfactory.
You can download my U-net trained model from: "https://drive.google.com/drive/folders/1qt7l3HOGIwOguWsMKc5fuwG2NGiGOucf?usp=sharing" and CNN trained model from: "https://drive.google.com/drive/folders/1fXFzMwNG6HrbNp6-GASAgeybeSB3JWCd?usp=sharing".
To access the codes, refer to my GitHub.
Github: https://github.com/AryaKoureshi/Brain-tumor-detection
Website: https://aryakoureshi.github.io/project/BT_detection
@Machine_learn
GitHub
GitHub - AryaKoureshi/Brain-tumor-detection: Implementation of medical image segmentation and deep learning framework with CNN…
Implementation of medical image segmentation and deep learning framework with CNN and U-net - AryaKoureshi/Brain-tumor-detection
NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion
Github: https://github.com/microsoft/nuwa
Paper: https://arxiv.org/abs/2111.12417v1
Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
Github: https://github.com/microsoft/nuwa
Paper: https://arxiv.org/abs/2111.12417v1
Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
Balanced Chamfer Distance as a Comprehensive Metric for Point Cloud Completion
Github: https://github.com/wutong16/density_aware_chamfer_distance
Paper: https://arxiv.org/abs/2111.12702
Dataset: https://paperswithcode.com/dataset/mvp
@Machine_learn
Github: https://github.com/wutong16/density_aware_chamfer_distance
Paper: https://arxiv.org/abs/2111.12702
Dataset: https://paperswithcode.com/dataset/mvp
@Machine_learn
GitHub
GitHub - wutong16/Density_aware_Chamfer_Distance: [ NeurIPS 2021 ] Pytorch implementation for "Density-aware Chamfer Distance as…
[ NeurIPS 2021 ] Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" - wutong16/Density_aware_Chamfer_Distance
📐 RepMLPNet: Hierarchical Vision MLP with Re-parameterized Locality (PyTorch)
Github: https://github.com/DingXiaoH/RepMLP
Pre-trained model: https://drive.google.com/drive/folders/1eDFunxOQ67MvBBmJ4Bw01TFh2YVNRrg2?usp=sharing
Paper: https://arxiv.org/abs/2112.11081v1
Task: https://paperswithcode.com/task/semantic-segmentation
@Machine_learn
Github: https://github.com/DingXiaoH/RepMLP
Pre-trained model: https://drive.google.com/drive/folders/1eDFunxOQ67MvBBmJ4Bw01TFh2YVNRrg2?usp=sharing
Paper: https://arxiv.org/abs/2112.11081v1
Task: https://paperswithcode.com/task/semantic-segmentation
🛠 Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow.🛠
💻 Github: Link
📄 Paper: Link
✏️ Tasks: Link
@Machine_learn
💻 Github: Link
📄 Paper: Link
✏️ Tasks: Link
@Machine_learn
—————— ConvNeXt ——————--
Facebook propose ConvNeXt, a pure ConvNet model constructed entirely from standard ConvNet modules. ConvNeXt is accurate, efficient, scalable and very simple in design.
Github: https://github.com/facebookresearch/ConvNeXt
Paper: https://arxiv.org/abs/2201.03545
@Machine_learn
Facebook propose ConvNeXt, a pure ConvNet model constructed entirely from standard ConvNet modules. ConvNeXt is accurate, efficient, scalable and very simple in design.
Github: https://github.com/facebookresearch/ConvNeXt
Paper: https://arxiv.org/abs/2201.03545
@Machine_learn
Trafic prediction.rar
39.1 MB
vehicle traffic prediction #23Paper @Machine_learn
TrafficMonitoring.zip
26.8 MB
vehicle Traffic monitoring #10Paper @Machine_learn
trafic classification.zip
71.1 MB
vehicle Traffic classification #38Paper @Machine_learn
با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند:
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
Machine learning books and papers pinned «با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند: 1-Deep Learning Basic -01_Introduction --01_How_TensorFlow_Works…»
Separating Birdsong in the Wild for Classification
http://ai.googleblog.com/2022/01/separating-birdsong-in-wild-for.html
@Machine_learn
http://ai.googleblog.com/2022/01/separating-birdsong-in-wild-for.html
research.google
Separating Birdsong in the Wild for Classification
Posted by Tom Denton, Software Engineer and Scott Wisdom, Research Scientist, Google Research Birds are all around us, and just by listening, we ca...
کتاب.pdf
11.5 MB
کتاب یادگیری ماشین و علم داده: مبانی، مفاهیم، الگوریتمها و ابزارها
دانلود نسخه pdf به صورت رایگان:
https://www.researchgate.net/profile/Milad-Vazan/publication/358263339_yadgyry_mashyn_w_lm_dadh_mbany_mfahym_algwrytmha_w_abzarha/links/61f90216007fb504472c5dc1/yadgyry-mashyn-w-lm-dadh-mbany-mfahym-algwrytmha-w-abzarha.pdf
@Machine_learn
دانلود نسخه pdf به صورت رایگان:
https://www.researchgate.net/profile/Milad-Vazan/publication/358263339_yadgyry_mashyn_w_lm_dadh_mbany_mfahym_algwrytmha_w_abzarha/links/61f90216007fb504472c5dc1/yadgyry-mashyn-w-lm-dadh-mbany-mfahym-algwrytmha-w-abzarha.pdf
@Machine_learn
Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild with Pose Annotations
Github: https://github.com/bobetocalo/bobetocalo_pami20
Paper: https://arxiv.org/pdf/2202.02299v1.pdf
Dataset: https://paperswithcode.com/dataset/aflw
@Machine_learn
Github: https://github.com/bobetocalo/bobetocalo_pami20
Paper: https://arxiv.org/pdf/2202.02299v1.pdf
Dataset: https://paperswithcode.com/dataset/aflw
@Machine_learn
🔝 Omnivore: A Single Model for Many Visual Modalities
Github: https://github.com/facebookresearch/omnivore
Code: https://github.com/facebookresearch/omnivore/blob/main/inference_tutorial.ipynb
Paper: https://arxiv.org/abs/2201.08377
Dataset: https://paperswithcode.com/dataset/epic-kitchens-100
@Machine_learn
Github: https://github.com/facebookresearch/omnivore
Code: https://github.com/facebookresearch/omnivore/blob/main/inference_tutorial.ipynb
Paper: https://arxiv.org/abs/2201.08377
Dataset: https://paperswithcode.com/dataset/epic-kitchens-100
@Machine_learn
GAN 3D.rar
32.8 MB
GAN Cloud Point Generation #Virtual_Reality 9 Papers @Machine_learn