Telegram Web Link
ijaerv14n3_24.pdf
1.1 MB
Convolutional Neural Networks: A Comprehensive Survey #CNN #Survey #Paper @Machine_learn
s40537-021-00444-8.pdf
7.3 MB
Review of deep learning: concepts, CNN
architectures, challenges, applications, future
directions #CNN #Survey #Paper @Machine_learn
با عرض سلام دوستانی که نیاز به تهیه ی پکیچ ما دارند می تونن به ایدی بنده پیام بدن @Raminmousa . همچنین دوستانی که نیاز به مشاوره در رابطه با کارهای عملی، پروپوزال و پایان نامه دارند می تونن با ایدی بنده یا شماره واتس اپ بنده 09333900804 در ارتباط باشند.
Machine learning books and papers pinned «با عرض سلام دوستانی که نیاز به تهیه ی پکیچ ما دارند می تونن به ایدی بنده پیام بدن @Raminmousa . همچنین دوستانی که نیاز به مشاوره در رابطه با کارهای عملی، پروپوزال و پایان نامه دارند می تونن با ایدی بنده یا شماره واتس اپ بنده 09333900804 در ارتباط باشند.»
BCS_LSTM_Lecture.pdf
2.2 MB
Computational Tutorial:
An introduction to LSTMs in Tensorflow #Slide #RNN @Machine_learn
rnn_tutorial.pdf
1.1 MB
Recurrent Neural Network
TINGWU WANG,
MACHINE LEARNING GROUP,
UNIVERSITY OF TORONTO #Slide #RNN @Machine_learn
1506.00019.pdf
1 MB
A Critical Review of Recurrent Neural Networks
for Sequence Learning #Survey #RNN @Machine_learn
2011.11347.pdf
375.9 KB
Time Series Data Imputation: A Survey on Deep Learning Approaches #RNN #Survey @Machine_learn
3448974.pdf
2 MB
Recurrent Neural Networks for Edge Intelligence: A Survey #Survey #RNN @Machine_learn
The fashion industry is on the verge of an unprecedented change. The implementation of machine learning, computer vision, and artificial intelligence (AI) in fashion applications is opening lots of new opportunities for this industry. This paper provides a comprehensive survey on this matter, categorizing more than 580 related articles into 22 well-defined fashion-related tasks. Such structured task-based multi-label classification of fashion research articles provides researchers with explicit research directions and facilitates their access to the related studies, improving the visibility of studies simultaneously. For each task, a time chart is provided to analyze the progress through the years. Furthermore, we provide a list of 86 public fashion datasets accompanied by a list of suggested applications and additional information for each.
link: https://arxiv.org/abs/2111.00905

@Machine_learn
03.pdf
703 KB
COMPARATIVE STUDY OF CAPSULE NEURAL NETWORK IN VARIOUS APPLICATIONS #CapsuleNet #Paper #Survey @Machine_learn
2025/07/09 12:12:40
Back to Top
HTML Embed Code: