Telegram Web Link
سلام دوستان جهت کسب اطلاعات از نحوه خرید می تونین با بنده در ارتباط باشین
@Raminmousa
Ted Talk with Yann LeCun

in which Yann discusses his current research into self-supervised machine learning, how he's trying to build machines that learn with common sense (like humans) and his hopes for the next conceptual breakthrough in AI.

▶️ Watch

@Machine_learn
PlenOctrees For Real-time Rendering of Neural Radiance Fields

And yet another speed-up of NERF. Exactly the same idea as in FastNeRF and NEX (predict spherical harmonics coefficients k) - incredible! It's the first time I see so many concurrent papers sharig the same idea. But this one has code at least, which makes it the best!

📝 Paper arxiv.org/abs/2103.14024
🌐Project page alexyu.net/plenoctrees/
🛠Code github.com/sxyu/volrend


@Machine_learn
​​EfficientNetV2: Smaller Models and Faster Training

A new paper from Google Brain with a new SOTA architecture called EfficientNetV2. The authors develop a new family of CNN models that are optimized both for accuracy and training speed. The main improvements are:

- an improved training-aware neural architecture search with new building blocks and ideas to jointly optimize training speed and parameter efficiency;
- a new approach to progressive learning that adjusts regularization along with the image size;

As a result, the new approach can reach SOTA results while training faster (up to 11x) and smaller (up to 6.8x).

Paper: https://arxiv.org/abs/2104.00298

Code will be available here:
https://github.com/google/automl/efficientnetv2

A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-effnetv2

@Machine_learn
500 + 𝗔𝗿𝘁𝗶𝗳𝗶𝗰𝗶𝗮𝗹 𝗜𝗻𝘁𝗲𝗹𝗹𝗶𝗴𝗲𝗻𝗰𝗲 𝗣𝗿𝗼𝗷𝗲𝗰𝘁 𝗟𝗶𝘀𝘁 𝘄𝗶𝘁𝗵 𝗰𝗼𝗱𝗲

500
AI Machine learning Deep learning Computer vision NLP Projects with code

This list is continuously updated. - You can take pull request and contribute.

https://github.com/ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code

@Machine_learn
document.pdf
670.5 KB
How Machine Learning is Changing e-Government @Machine_learn
با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند:


1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
Machine learning books and papers pinned «با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند: 1-Deep Learning Basic -01_Introduction --01_How_TensorFlow_Works…»
2025/07/06 21:21:14
Back to Top
HTML Embed Code: