An Empirical Analysis of Visual Features for Multiple Object Tracking in Urban Scenes
Github: https://github.com/Guepardow/Visual-features
Paper: https://arxiv.org/abs/2010.07881
@Machine_learn
Github: https://github.com/Guepardow/Visual-features
Paper: https://arxiv.org/abs/2010.07881
@Machine_learn
LRS(1).pdf
3.2 MB
How is Machine Learning used in the LinkedIn Recruiter Recommendation System
@Machine_learn
@Machine_learn
New Approaches to Object Detection
source code: https://github.com/Ximilar-com/xcenternet
paper : https://arxiv.org/abs/1904.07850
https://towardsdatascience.com/new-approaches-to-object-detection-f5cbc925e00e
join:@Machine_learn
source code: https://github.com/Ximilar-com/xcenternet
paper : https://arxiv.org/abs/1904.07850
https://towardsdatascience.com/new-approaches-to-object-detection-f5cbc925e00e
join:@Machine_learn
Advanced YouTube Video Downloader using Python
https://morioh.com/p/4e7657ecf335
Code: https://github.com/Spidy20/IPL_Score_Notifier
@Machine_learn
https://morioh.com/p/4e7657ecf335
Code: https://github.com/Spidy20/IPL_Score_Notifier
@Machine_learn
📡 Athena is an open-source implementation of end-to-end speech processing engine
Github: https://github.com/athena-team/athena
Paper: https://arxiv.org/abs/2010.13991v1
@Machine_learn
Github: https://github.com/athena-team/athena
Paper: https://arxiv.org/abs/2010.13991v1
@Machine_learn
Trajectory-wise Multiple Choice Learning for Generalization in Reinforcement Learning
https://github.com/younggyoseo/trajectory_mcl
@Machine_learn
https://github.com/younggyoseo/trajectory_mcl
@Machine_learn
Dealing with Imbalanced Data in Machine Learning
https://www.kdnuggets.com/2020/10/imbalanced-data-machine-learning.html
Code: https://github.com/mwitiderrick/imbalanced-data
@Machine_learn
https://www.kdnuggets.com/2020/10/imbalanced-data-machine-learning.html
Code: https://github.com/mwitiderrick/imbalanced-data
@Machine_learn
KDnuggets
Dealing with Imbalanced Data in Machine Learning
This article presents tools & techniques for handling data when it's imbalanced.
با عرض سلام
دوستانی که تمایل به مشارکت در کار پژوهشی به عنوان اسپانسر دارند می توانند به بنده جهت هماهنگی پیام بدهند.
@Raminmousa
دوستانی که تمایل به مشارکت در کار پژوهشی به عنوان اسپانسر دارند می توانند به بنده جهت هماهنگی پیام بدهند.
@Raminmousa
machine-learning-cheat-sheet.pdf
1.9 MB
Machine Learning Cheat Sheet
Classical equations, diagrams and tricks in machine learning
#ML #Cheat_Sheet
@Machine_learn
Classical equations, diagrams and tricks in machine learning
#ML #Cheat_Sheet
@Machine_learn
❤1
New Coral APIs and tools for AI at the edge
https://blog.tensorflow.org/2020/11/new-coral-apis-and-tools-for-ai-at-edge.html
@Machine_learn
https://blog.tensorflow.org/2020/11/new-coral-apis-and-tools-for-ai-at-edge.html
@Machine_learn
blog.tensorflow.org
New Coral APIs and tools for AI at the edge
The TensorFlow blog contains regular news from the TensorFlow team and the community, with articles on Python, TensorFlow.js, TF Lite, TFX, and more.
Data Ethics course: https://t.co/1vLF2rzuTd
Deep Learning course: https://t.co/KgtHR2B9Vk
Data Science blog: https://t.co/ZWYKPXufDW
Diversity blog: https://t.co/cCuOAEtEAj
NLP: https://t.co/zC31JsKLwz
Talks: https://t.co/msa2Sh3UCI
Medicine, AI, & Bias: https://t.co/w1yK7GP5i0
@Machine_learn
Deep Learning course: https://t.co/KgtHR2B9Vk
Data Science blog: https://t.co/ZWYKPXufDW
Diversity blog: https://t.co/cCuOAEtEAj
NLP: https://t.co/zC31JsKLwz
Talks: https://t.co/msa2Sh3UCI
Medicine, AI, & Bias: https://t.co/w1yK7GP5i0
@Machine_learn
ethics.fast.ai
Practical Data Ethics
Free, online course from fast.ai and USF Data Institute covering disinformation, bias & fairness, ethical foundations, practical tools, privacy & surveillance, the silicon valley ecosystem, and algorithmic colonialism
XLA: Optimizing Compiler for Machine Learning | TensorFlow
https://www.tensorflow.org/xla
@Machine_learn
https://www.tensorflow.org/xla
@Machine_learn
OpenXLA Project
Disentangling Latent Space for Unsupervised Semantic Face Editing
Github: https://github.com/max-liu-112/STGAN-WO
Paper: https://arxiv.org/abs/2011.02638
@Machine_learn
Github: https://github.com/max-liu-112/STGAN-WO
Paper: https://arxiv.org/abs/2011.02638
@Machine_learn
GitHub
GitHub - max-liu-112/STGAN-WO: Implementation of STGAN-WO
Implementation of STGAN-WO. Contribute to max-liu-112/STGAN-WO development by creating an account on GitHub.
Experimental design for MRI by greedy policy search
Github: https://github.com/Timsey/pg_mri
Paper: https://arxiv.org/abs/2010.16262v1
@Machine_learn
Github: https://github.com/Timsey/pg_mri
Paper: https://arxiv.org/abs/2010.16262v1
@Machine_learn
Deep Multimodal Fusion by Channel Exchanging
Github: https://github.com/yikaiw/CEN
Dataset: https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
Paper: https://arxiv.org/abs/2011.05005
@Machine_learn
Github: https://github.com/yikaiw/CEN
Dataset: https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
Paper: https://arxiv.org/abs/2011.05005
@Machine_learn
GitHub
GitHub - yikaiw/CEN: [TPAMI 2023, NeurIPS 2020] Code release for "Deep Multimodal Fusion by Channel Exchanging"
[TPAMI 2023, NeurIPS 2020] Code release for "Deep Multimodal Fusion by Channel Exchanging" - yikaiw/CEN
Introduction_to_Deep_Learning_Using_R_A_Step_by_Step_Guide_to_Learning.pdf
7.1 MB
Introduction to Deep Learning Using R
A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R
#book #DL
@Machine_learn
A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R
#book #DL
@Machine_learn
❤1