Telegram Web Link
📄The role and application of bioinformatics techniques and tools in drug discovery

📎 Study the paper


@Machine_learn
ViDoRAG: Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents

25 Feb 2025 · Qiuchen Wang, Ruixue Ding, Zehui Chen, Weiqi Wu, Shihang Wang, Pengjun Xie, Feng Zhao ·

Understanding information from visually rich documents remains a significant challenge for traditional Retrieval-Augmented Generation (RAG) methods. Existing benchmarks predominantly focus on image-based question answering (QA), overlooking the fundamental challenges of efficient retrieval, comprehension, and reasoning within dense visual documents. To bridge this gap, we introduce ViDoSeek, a novel dataset designed to evaluate RAG performance on visually rich documents requiring complex reasoning. Based on it, we identify key limitations in current RAG approaches: (i) purely visual retrieval methods struggle to effectively integrate both textual and visual features, and (ii) previous approaches often allocate insufficient reasoning tokens, limiting their effectiveness. To address these challenges, we propose #ViDoRAG, a novel multi-agent RAG framework tailored for complex reasoning across visual documents. ViDoRAG employs a Gaussian Mixture Model (GMM)-based hybrid strategy to effectively handle multi-modal retrieval. To further elicit the model's reasoning capabilities, we introduce an iterative agent workflow incorporating exploration, summarization, and reflection, providing a framework for investigating test-time scaling in RAG domains. Extensive experiments on ViDoSeek validate the effectiveness and generalization of our approach. Notably, ViDoRAG outperforms existing methods by over 10% on the competitive #ViDoSeek benchmark.

Paper: https://arxiv.org/pdf/2502.18017v1.pdf

Code: https://github.com/Alibaba-NLP/ViDoRAG

@Machine_learn
CS229 Lecture Notes
Andrew Ng and Tengyu Ma


📚 Link


@Machine_learn
Forwarded from Papers
با عرض سلام براي مقاله بالا نياز به نفر ٣ ام هستيم.
مجله هاي پيشنهادي جهت سابميت.

🔺🔺🔺🔸🔸🔸🔺🔺🔺
-Soft computing
- Computational Economics
- Multimedia Tools and Applicaion
جهت ثبت اسم با ايدي بنده در ارتباط باشين
@Raminmousa
@Machine_learn
@paper4money
Please open Telegram to view this post
VIEW IN TELEGRAM
Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation

🖥 Github: https://github.com/EnVision-Research/Kiss3DGen

📕 Paper: https://arxiv.org/abs/2503.01370v1

🌟 Dataset: https://paperswithcode.com/dataset/nerf

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Know You First and Be You Better: Modeling Human-Like User Simulators via Implicit Profiles

26 Feb 2025 · Kuang Wang, Xianfei Li, Shenghao Yang, Li Zhou, Feng Jiang, Haizhou Li ·

User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, existing simulators often rely solely on text utterances, missing implicit user traits such as personality, speaking style, and goals. In contrast, persona-based methods lack generalizability, as they depend on predefined profiles of famous individuals or archetypes. To address these challenges, we propose User Simulator with implicit Profiles (#USP), a framework that infers implicit user profiles from human-machine conversations and uses them to generate more personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema. Then, we refine the simulation through conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing it at both the utterance and conversation levels. Finally, we adopt a diverse profile sampler to capture the distribution of real-world user profiles. Experimental results demonstrate that USP outperforms strong baselines in terms of authenticity and diversity while achieving comparable performance in consistency. Furthermore, dynamic multi-turn evaluations based on USP strongly align with mainstream benchmarks, demonstrating its effectiveness in real-world applications
.
Paper: https://arxiv.org/pdf/2502.18968v1.pdf

Code: https://github.com/wangkevin02/USP

Dataset: LMSYS-USP


@Machine_learn
Forwarded from Papers
با عرض سلام براي مقاله بالا نياز به نفر 1 یا سوم ام هستيم.
مجله پيشنهادي جهت سابميت.

https://www.springerprofessional.de/financial-innovation/50101254
If6️⃣. 5
هزینه نفر اول ۵۰۰$ و هزینه نفر سوم ۳۰۰$ می باشد

🔺🔺🔺🔸🔸🔸🔺🔺🔺

جهت ثبت اسم با ايدي بنده در ارتباط باشين
@Raminmousa
@Machine_learn
@paper4money
Please open Telegram to view this post
VIEW IN TELEGRAM
Attention from Beginners Point of View

📚 Reed


@Machine_learn
A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS

📚 Read

@Machine_learn
🔥 Exercises in Machine Learning

Book

@Machine_learn
با عرض سلام برای مقاله زیر نیاز به کسی داریم که هزینه سرور با ما شریک بشه.

Multi-modal wound classification using wound image and location by vit-wavelet and transformer
🔸🔸🔸🔸🔸🔸🔸
Jouranl: scientific reports(nature)
هزینه مشارکت نفر ۵ ام ۳۰۰$ می باشد.
🔻@Raminmousa
Please open Telegram to view this post
VIEW IN TELEGRAM
Controlling Latent Diffusion Using Latent CLIP

📚 Read

@Machine_learn
Forwarded from Papers
با عرض سلام براي مقاله بالا نياز به نفر سوم ام هستيم.
مجله پيشنهادي جهت سابميت.

https://www.springerprofessional.de/financial-innovation/50101254
If6️⃣. 5
هزینه نفر سوم ۱۵ میلیون می باشد

🔺🔺🔺🔸🔸🔸🔺🔺🔺

جهت ثبت اسم با ايدي بنده در ارتباط باشين
@Raminmousa
@Machine_learn
@paper4money
Please open Telegram to view this post
VIEW IN TELEGRAM
Everything You Always Wanted To Know About Mathematics*

📓 book

@Machine_learn
2025/07/04 19:54:14
Back to Top
HTML Embed Code: