Mathematics of Machine Learning.pdf
3.9 MB
📚 Mathematics of Machine Learning
👨🏻🏫 Philipp Christian Petersen
📝 Table of Contents:
● Language of Machine Learning
● ML Mathematical Framework
● Rademacher Complexities
● Rademacher Complexities Applications
●The Mysterious Machine
● Lower Bounds on Learning
● Model Selection
● Regression and Regularization
● Freezing Fritz
● Support Vector Machines
● Kernel Methods
● Nearest Neighbour
● Neural Networks
● Boosting
● Clustering
● Dimensionality Reduction
@Machine_learn
👨🏻🏫 Philipp Christian Petersen
📝 Table of Contents:
● Language of Machine Learning
● ML Mathematical Framework
● Rademacher Complexities
● Rademacher Complexities Applications
●The Mysterious Machine
● Lower Bounds on Learning
● Model Selection
● Regression and Regularization
● Freezing Fritz
● Support Vector Machines
● Kernel Methods
● Nearest Neighbour
● Neural Networks
● Boosting
● Clustering
● Dimensionality Reduction
@Machine_learn
با عرض سلام پروژه جدیدمون شروع شد.
هدف اصلی این پروژه اموزش یک مدل پیشنهاد دهنده ی مدل برای مسائله طبقه بندی تصاویر پزشکی میباشد که از اموزش مجدد مدل ها جلوگیری میکند. این مسائله با جنبه جلوگیری از مصرف انرژی اموزشی و زمان اموزش مدل ها ارائه می شود. برای این منظور ۵۰۰۰ مقاله در این زمینه جمع اوری شده است. جزئیات بیشتر در لینک گیت قرار دارد.
Project Title: MedRec: Medical recommender system for image classification without retraining
Github: https://github.com/Ramin1Mousa/MedicalRec
Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence
Impact factor: 20.8
۷ نفر دیگر امکان اضافه شدن به این پروژه رو دارند. هر شخص نیاز هست که حدودا داده های ۴۰۰ مقاله رو بررسی کند. زمان تقریبی هر مقاله ۵-۱۰ دقیقه می باشد. هزینه مشارکت در مقاله:
🔹 2- 600$
🔺 3- 500$
💠 4- 400$
🔺 5- 300$
🔹 6- 200$
🔸 7- 200$
جهت مشارکت می تونید به ایدی بنده پیام بدین.
🔹 شنبه شروع این پروژه هست🔹
@Raminmousa
هدف اصلی این پروژه اموزش یک مدل پیشنهاد دهنده ی مدل برای مسائله طبقه بندی تصاویر پزشکی میباشد که از اموزش مجدد مدل ها جلوگیری میکند. این مسائله با جنبه جلوگیری از مصرف انرژی اموزشی و زمان اموزش مدل ها ارائه می شود. برای این منظور ۵۰۰۰ مقاله در این زمینه جمع اوری شده است. جزئیات بیشتر در لینک گیت قرار دارد.
Project Title: MedRec: Medical recommender system for image classification without retraining
Github: https://github.com/Ramin1Mousa/MedicalRec
Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence
Impact factor: 20.8
۷ نفر دیگر امکان اضافه شدن به این پروژه رو دارند. هر شخص نیاز هست که حدودا داده های ۴۰۰ مقاله رو بررسی کند. زمان تقریبی هر مقاله ۵-۱۰ دقیقه می باشد. هزینه مشارکت در مقاله:
جهت مشارکت می تونید به ایدی بنده پیام بدین.
@Raminmousa
Please open Telegram to view this post
VIEW IN TELEGRAM
List of 500+AI Agent projects/UseCases
https://github.com/DataSpoof/500-AI-Agents-Projects
@Machine_learn
https://github.com/DataSpoof/500-AI-Agents-Projects
@Machine_learn
Forecasting of Bitcoin Prices Using Hashrate Features: Wavelet and Deep Stacking Approach
✅ NEW PAPER
Link: https://arxiv.org/abs/2501.13136
Abstract: Digital currencies have become popular in the last decade due to their non-dependency and decentralized nature. The price of these currencies has seen a lot of fluctuations at times, which has increased the need for prediction. As their most popular, Bitcoin(BTC) has become a research hotspot. The main challenge and trend of digital currencies, especially BTC, is price fluctuations, which require studying the basic price prediction model. This research presents a classification and regression model based on stack deep learning that uses a wavelet to remove noise to predict movements and prices of BTC at different time intervals. The proposed model based on the stacking technique uses models based on deep learning, especially neural networks and transformers, for one, seven, thirty and ninety-day forecasting. Three feature selection models, Chi2, RFE and Embedded, were also applied to the data in the pre-processing stage. The classification model achieved 63\% accuracy for predicting the next day and 64\%, 67\% and 82\% for predicting the seventh, thirty and ninety days, respectively. For daily price forecasting, the percentage error was reduced to 0.58, while the error ranged from 2.72\% to 2.85\% for seven- to ninety-day horizons. These results show that the proposed model performed better than other models in the literature.
@Machine_learn
Link: https://arxiv.org/abs/2501.13136
Abstract: Digital currencies have become popular in the last decade due to their non-dependency and decentralized nature. The price of these currencies has seen a lot of fluctuations at times, which has increased the need for prediction. As their most popular, Bitcoin(BTC) has become a research hotspot. The main challenge and trend of digital currencies, especially BTC, is price fluctuations, which require studying the basic price prediction model. This research presents a classification and regression model based on stack deep learning that uses a wavelet to remove noise to predict movements and prices of BTC at different time intervals. The proposed model based on the stacking technique uses models based on deep learning, especially neural networks and transformers, for one, seven, thirty and ninety-day forecasting. Three feature selection models, Chi2, RFE and Embedded, were also applied to the data in the pre-processing stage. The classification model achieved 63\% accuracy for predicting the next day and 64\%, 67\% and 82\% for predicting the seventh, thirty and ninety days, respectively. For daily price forecasting, the percentage error was reduced to 0.58, while the error ranged from 2.72\% to 2.85\% for seven- to ninety-day horizons. These results show that the proposed model performed better than other models in the literature.
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
arXiv.org
Forecasting of Bitcoin Prices Using Hashrate Features: Wavelet and...
Digital currencies have become popular in the last decade due to their non-dependency and decentralized nature. The price of these currencies has seen a lot of fluctuations at times, which has...
📃 Demystifying the black box: A survey on explainable artificial intelligence (XAI) in bioinformatics
📎 Study the paper
@Machine_learn
📎 Study the paper
@Machine_learn
Physics IQ Benchmark: Do generative video models learn physical principles from watching videos
Book
@Machine_learn
Book
@Machine_learn
This channels is for Programmers, Coders, Software Engineers.
0️⃣ Python
1️⃣ Data Science
2️⃣ Machine Learning
3️⃣ Data Visualization
4️⃣ Artificial Intelligence
5️⃣ Data Analysis
6️⃣ Statistics
7️⃣ Deep Learning
8️⃣ programming Languages
✅ https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0
✅ https://www.tg-me.com/codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
Telegram
Data science
You’ve been invited to add the folder “Data science”, which includes 15 chats.
Click-Calib: A Robust Extrinsic Calibration Method for Surround-View Systems
Surround-View System (SVS) is an essential component in Advanced Driver Assistance System (ADAS) and requires precise calibrations.
Paper: https://arxiv.org/pdf/2501.01557v2.pdf
Code: https://github.com/lwangvaleo/click_calib
Dataset: WoodScape
@Machine_learn
Surround-View System (SVS) is an essential component in Advanced Driver Assistance System (ADAS) and requires precise calibrations.
Paper: https://arxiv.org/pdf/2501.01557v2.pdf
Code: https://github.com/lwangvaleo/click_calib
Dataset: WoodScape
@Machine_learn
📄 Deep Generative Models for Therapeutic Peptide Discovery: A Comprehensive Review
📎 Study the paper
@Machine_learn
📎 Study the paper
@Machine_learn
Free access to our secret channels ✅
📚 Free Data Science Books
👨💻 Programming Handwritten Notes
🎁 Python Free Courses
🤖 Learn AI with ChatGPT
🏆 Data Science Projects
👩🎓 Coding Projects
💝 Free Coding Certified Courses
💪 Quiz and Job Opportunities
And Many More......
✅ Join now : https://www.tg-me.com/machinelearning_deeplearning
✅ Data Science & AI Jobs
Join fast before I delete the link ❤️
📚 Free Data Science Books
👨💻 Programming Handwritten Notes
🎁 Python Free Courses
🤖 Learn AI with ChatGPT
🏆 Data Science Projects
👩🎓 Coding Projects
💝 Free Coding Certified Courses
💪 Quiz and Job Opportunities
And Many More......
✅ Join now : https://www.tg-me.com/machinelearning_deeplearning
✅ Data Science & AI Jobs
Join fast before I delete the link ❤️
Telegram
Artificial Intelligence
🔰 Machine Learning & Artificial Intelligence Free Resources
🔰 Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more
Admin: @coderfun
Buy ads: https://telega.io/c/machinelearning_deeplearning
🔰 Learn Data Science, Deep Learning, Python with Tensorflow, Keras & many more
Admin: @coderfun
Buy ads: https://telega.io/c/machinelearning_deeplearning
📄A Survey of Genetic Programming Applications in Modern Biological Research
📎 Study the paper
@Machine_learn
📎 Study the paper
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM