📃 Large language model to multimodal large language model: A journey to shape the biological macromolecules to biological sciences and medicine
📓 Journal: Molecular Therapy Nucleic Acids (I.F.=6.5)
📎 Study the paper
@Machine_learn
📓 Journal: Molecular Therapy Nucleic Acids (I.F.=6.5)
📎 Study the paper
@Machine_learn
📑 Advances of the recent data-driven paradigm shift in medicine and healthcare: From machine learning to deep learning
📎 Study the paper
@Machine_learn
📎 Study the paper
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Machine learning books and papers
با عرض سلام مقاله زیر در مرحله major revision میباشد. نفر ۴ ام از این مقاله قابل اضافه کردن. Abstract Breast cancer stands as a prevalent cause of fatality among females on a global scale, with prompt detection playing a pivotal role in diminishing mortality…
با عرض سلام تمامي كار هاي مشترك تموم شدن و فقط اين كار باقي مونده....!
@Raminmousa
@Raminmousa
Are They the Same? Exploring Visual Correspondence Shortcomings of Multimodal LLMs
🖥 Github: https://github.com/zhouyiks/CoLVA/tree/main
📕 Paper: https://arxiv.org/pdf/2501.04670v1.pdf
🌟 Dataset: https://paperswithcode.com/dataset/bdd100k
@Machine_learn
🌟 Dataset: https://paperswithcode.com/dataset/bdd100k
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
# Clone repo
git clone https://github.com/Johanan528/DepthLab.git
cd DepthLab
# Create conda env
conda env create -f environment.yaml
conda activate DepthLab
# Run inference
cd scripts
bash infer.sh
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Deep_Learning_Hyperparameter_tuning_Regularization_and_Optimization.pdf
2.4 MB
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and
Optimization
#Dl
@Machine_learn
Optimization
#Dl
@Machine_learn
# Install from PyPI
pip install outetts
# Interface Usage
import outetts
# Configure the model
model_config = outetts.HFModelConfig_v1(
model_path="OuteAI/OuteTTS-0.2-500M",
language="en", # Supported languages in v0.2: en, zh, ja, ko
)
# Initialize the interface
interface = outetts.InterfaceHF(model_version="0.2", cfg=model_config)
# Optional: Create a speaker profile (use a 10-15 second audio clip)
speaker = interface.create_speaker(
audio_path="path/to/audio/file",
transcript="Transcription of the audio file."
)
# Optional: Load speaker from default presets
interface.print_default_speakers()
speaker = interface.load_default_speaker(name="male_1")
output = interface.generate(
text="%Prompt Text%%.",
temperature=0.1,
repetition_penalty=1.1,
max_length=4096,
# Optional: Use a speaker profile
speaker=speaker,
)
# Save the synthesized speech to a file
output.save("output.wav")
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Are They the Same? Exploring Visual Correspondence Shortcomings of Multimodal LLMs
🖥 Github: https://github.com/zhouyiks/CoLVA/tree/main
📕 Paper: https://arxiv.org/pdf/2501.04670v1.pdf
⭐️ Dataset: https://paperswithcode.com/dataset/bdd100k
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
📃 Bioinformatics perspectives on transcriptomics: A comprehensive review of bulk and single-cell RNA sequencing analyses
📎 Study the paper
@Machine_learn
📎 Study the paper
@Machine_learn
📄 Application of Artificial Intelligence In Drug-target Interactions Prediction: A Review
📗 Journal: npj Biomedical Innovations
🗓Publish year: 2025
📎 Study the paper
@Machine_learn
📗 Journal: npj Biomedical Innovations
🗓Publish year: 2025
📎 Study the paper
@Machine_learn