Telegram Web Link
📃 Large language model to multimodal large language model: A journey to shape the biological macromolecules to biological sciences and medicine

📓 Journal: Molecular Therapy Nucleic Acids (I.F.=6.5)



📎 Study the paper


@Machine_learn
📑 Advances of the recent data-driven paradigm shift in medicine and healthcare: From machine learning to deep learning

📎 Study the paper


@Machine_learn
Towards System 2 Reasoning in LLMs

📕 Link


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Are They the Same? Exploring Visual Correspondence Shortcomings of Multimodal LLMs

🖥 Github: https://github.com/zhouyiks/CoLVA/tree/main

📕 Paper: https://arxiv.org/pdf/2501.04670v1.pdf

🌟 Dataset: https://paperswithcode.com/dataset/bdd100k

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 DepthLab

# Clone repo
git clone https://github.com/Johanan528/DepthLab.git
cd DepthLab

# Create conda env
conda env create -f environment.yaml
conda activate DepthLab

# Run inference
cd scripts
bash infer.sh



🟡Arxiv
🖥GitHub


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Mathematical Foundations of Machine Learning

📓 book

@Machine_learn
این مقاله جزو‌ اولین سری مقالات ما در حوزه ی LLM هستش
Deep_Learning_Hyperparameter_tuning_Regularization_and_Optimization.pdf
2.4 MB
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and
Optimization

#Dl
@Machine_learn
این فقط نفر ۴ امش باقی مونده
🌟 🌟 OuteTTS-0.2-500M

# Install from PyPI
pip install outetts

# Interface Usage
import outetts

# Configure the model
model_config = outetts.HFModelConfig_v1(
model_path="OuteAI/OuteTTS-0.2-500M",
language="en", # Supported languages in v0.2: en, zh, ja, ko
)

# Initialize the interface
interface = outetts.InterfaceHF(model_version="0.2", cfg=model_config)

# Optional: Create a speaker profile (use a 10-15 second audio clip)
speaker = interface.create_speaker(
audio_path="path/to/audio/file",
transcript="Transcription of the audio file."
)

# Optional: Load speaker from default presets
interface.print_default_speakers()
speaker = interface.load_default_speaker(name="male_1")

output = interface.generate(
text="%Prompt Text%%.",
temperature=0.1,
repetition_penalty=1.1,
max_length=4096,

# Optional: Use a speaker profile
speaker=speaker,
)

# Save the synthesized speech to a file
output.save("output.wav")






🟡Demo

🖥GitHub


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 LLaVA-CoT: VLM с


🟡Arxiv
🟡Demo
🖥GitHub


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Are They the Same? Exploring Visual Correspondence Shortcomings of Multimodal LLMs

🖥 Github: https://github.com/zhouyiks/CoLVA/tree/main

📕 Paper: https://arxiv.org/pdf/2501.04670v1.pdf

⭐️ Dataset: https://paperswithcode.com/dataset/bdd100k

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
📃 Bioinformatics perspectives on transcriptomics: A comprehensive review of bulk and single-cell RNA sequencing analyses



📎 Study the paper


@Machine_learn
📄 Application of Artificial Intelligence In Drug-target Interactions Prediction: A Review

📗 Journal: npj Biomedical Innovations
🗓Publish year: 2025


📎 Study the paper



@Machine_learn
2025/02/24 12:56:17
Back to Top
HTML Embed Code: