Telegram Web Link
Large Language Models Course: Learn by Doing LLM Projects

🖥 Github: https://github.com/peremartra/Large-Language-Model-Notebooks-Course

📕 Paper: https://doi.org/10.31219/osf.io/qgxea

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41🔥1
Python for Everybody Exploring Data Using Python 3

📓 book

@Machine_learn
👍3
KAG: Boosting LLMs in Professional Domains via Knowledge Augmented Generation

Paper: https://arxiv.org/pdf/2409.13731v3.pdf

Code: https://github.com/openspg/kag

Dataset: 2WikiMultiHopQA

🔸@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Arcade Academy - Learn Python

📖 Book

@Machine_learn
📄 RNA Sequencing Data: Hitchhiker's Guide to Expression Analysis


📎 Study the paper


@Machine_learn
👍2
Lecture notes: mathematics for artificial intelligence

📕 Link


@Machine_learn
👍1
امشب اخرین فرصت برای مشارکت در این مقاله هستش...!🔸🔸
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 🌟 OuteTTS-0.2-500M

# Install from PyPI
pip install outetts

# Interface Usage
import outetts

# Configure the model
model_config = outetts.HFModelConfig_v1(
model_path="OuteAI/OuteTTS-0.2-500M",
language="en", # Supported languages in v0.2: en, zh, ja, ko
)

# Initialize the interface
interface = outetts.InterfaceHF(model_version="0.2", cfg=model_config)

# Optional: Create a speaker profile (use a 10-15 second audio clip)
speaker = interface.create_speaker(
audio_path="path/to/audio/file",
transcript="Transcription of the audio file."
)

# Optional: Load speaker from default presets
interface.print_default_speakers()
speaker = interface.load_default_speaker(name="male_1")

output = interface.generate(
text="%Prompt Text%%.",
temperature=0.1,
repetition_penalty=1.1,
max_length=4096,

# Optional: Use a speaker profile
speaker=speaker,
)

# Save the synthesized speech to a file
output.save("output.wav")


🟡Demo

🖥GitHub

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
⚡️ NeuZip

▶️

# Install from PyPI
pip install neuzip

# Use Neuzip for Pytorch model
model: torch.nn.Module = # your model
+ manager = neuzip.Manager()
+ model = manager.convert(model)



🟡Arxiv
🖥GitHub


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Papers
با عرض سلام پروژه Biopars رو شروع كرديم نفر ٥ ام از اين مقاله رو نياز داريم.
این کار تحت نظر استاد
Rex (Zhitao) Ying
انجام میشه.
link: https://scholar.google.com.au/citations?user=6fqNXooAAAAJ&hl=en
BioPars: a pre-trained biomedical large language model for persian biomedical text mining.
١- مراحل اوليه: جمع اوري متن هاي فارسي بيولوژيكي از منابع (...)
٢- پيش پردازش متن ها و تميز كردن متن ها
٣- اموزش ترنسفورمرها ي مورد نظر
٤- استفاده از بردارها ي اموزش داده شده در سه تسك (...)

هزينه سرور به ازاي هر ساعت ١.٢ دلار مي باشد. و حدود ٢ هزار ساعت براي اموزش مدل زباني نياز ميباشد.

دوستاني كه نياز دارن مي تونن به تيم ما اضافه بشن
🔸🔸🔸🔸🔸

@Raminmousa
Please open Telegram to view this post
VIEW IN TELEGRAM
📃A Survey of Graph Neural Networks for Social Recommender Systems


📎 Study paper

@Machine_learn
Automating the Search for Artificial Life with Foundation Models

paper: https://arxiv.org/pdf/2412.17799v1.pdf

Code: https://github.com/sakanaai/asal

@Machine_learn
👍2
Tensors in computations

📕Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍1
2025/07/12 10:43:38
Back to Top
HTML Embed Code: