Telegram Web Link
๐Ÿ“ƒA Comprehensive Review of Propagation Models in Complex Networks: From Deterministic to Deep Learning Approaches


๐Ÿ“Ž Study paper

๐Ÿ”บ@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
The Arcade Learning Environment (ALE) is a simple framework that allows researchers and hobbyists to develop AI agents for Atari 2600 game

๐Ÿ–ฅ Github: https://github.com/farama-foundation/arcade-learning-environment

๐Ÿ“• Paper: https://arxiv.org/abs/2410.23810v1

โšก๏ธ Dataset: https://paperswithcode.com/dataset/mujoco

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
DeepArUco++: improved detection of square fiducial markers in challenging lighting conditions

๐Ÿ–ฅ Github: https://github.com/avauco/deeparuco

๐Ÿ“• Paper: https://arxiv.org/pdf/2411.05552v1.pdf

โšก๏ธ Dataset: https://paperswithcode.com/dataset/coco

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
How to Build Your Career in AI

๐Ÿ“š Book

@Machine_learn
FRONTIERMATH: A BENCHMARK FOR EVALUATING ADVANCED
MATHEMATICAL REASONING IN AI


๐Ÿ“š Read

๐Ÿ’ @Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Competitive Programmer's Handbook

๐Ÿ“š Book

๐Ÿ”บ@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Deep Learning and Computational Physics - Lecture Notes, University of South California

๐Ÿ““ book

@Machine_learn
Collection of resources in the form of eBooks related to Data Science, Machine Learning, and similar topics

๐Ÿ“– Github

@Machine_learn
Nexusflow released Athene v2 72B - competetive with GPT4o & Llama 3.1 405B Chat, Code and Math ๐Ÿ”ฅ

> Arena Hard: GPT4o (84.9) vs Athene v2 (77.9) vs L3.1 405B (69.3)

> Bigcode-Bench Hard: GPT4o (30.8) vs Athene v2 (31.4) vs L3.1 405B (26.4)

> MATH: GPT4o (76.6) vs Athene v2 (83) vs L3.1 405B (73.8)

> Models on the Hub along and work out of the box w/ Transformers ๐Ÿค—

https://huggingface.co/Nexusflow/Athene-V2-Chat

They also release an Agent model: https://huggingface.co/Nexusflow/Athene-V2-Agent

@Machine_learn
A Brief Introduction to Neural Networks

๐Ÿ“• Book

@Machine_learn
๐Ÿ“ƒUnderstanding Graph Databases: A Comprehensive Tutorial and Survey

๐Ÿ“Ž Study paper

@Machine_learn
Decision Trees.pdf
5 MB
Decision Trees: A Comprehensive Guide
with Handwritten Notes, Explanations,
and Code

#DT
๐Ÿ”ธ@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
NLP Transformer-based Models used for Sentiment Analysis.pdf
6.5 MB
Compare NLP Transformer-based Models used for Sentiment Analysis code

๐Ÿ”บ@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Machine Learning for Hackers

๐Ÿ“– link

@Machine_learn
SLAck: Semantic, Location, and Appearance
Aware Open-Vocabulary Tracking


๐Ÿ“– Arxiv

@Machine_learn
An Introduction to Machine Learning

๐Ÿ“– book

@Machine_learn
Forwarded from Papers
ุจุง ุนุฑุถ ุณู„ุงู… ู…ู‚ุงู„ุงุช ุงูŠู† ู…ุงู‡ ุณุงุจู…ูŠุช ุดุฏู‡ ุจุง ูƒู…ูƒ ุฏูˆุณุชุงู†
1- Skin cancer detection
Group 1:
-Ramin M(Zanjan University), Saeed C(Tehran), Mohammad.M,*,+, Seyyed Mohammad.O(Sharif),Parsa.H(Sharif), and Soroush.S(
Raderon AI Lab, BC, Canada)
submit: https://www.nature.com/srep/
Group2:
Ramin Mousa(Zanjan),Amir Ali. B(University of Tehran), Hakimeh. K( University of Zanjan)
submit: https://www.sciencedirect.com/journal/computerized-medical-imaging-and-graphics
2- Survey:
Survey on evaluation of metrics for learning system
Ramin Mousa, Masoud.p
submit: https://www.sciencedirect.com/journal/knowledge-based-systems
3- NLP
Group1: multi-domain SA
BertCapsule:
Mohammadali M, Soghra M, Amir.P, Mehrshad.E and Ramin Mousa
submit: https://www.sciencedirect.com/journal/array


ุจู‡ ุฒูˆุฏูŠ ู„ูŠุณุชูŠ ุงุฒ ูƒุงุฑู‡ุงูŠ ุฌุฏูŠุฏ ู…ุนุฑููŠ ู…ูŠุดู‡ ูƒู‡ ุฏุฑ ุตูˆุฑุช ู†ูŠุงุฒ ุฏูˆุณุชุงู† ู…ูŠ ุชูˆู†ู† ุจู‡ ฺฏุฑูˆู‡ ู‡ุงู…ูˆู† ุงุถุงูู‡ ุจุดู†.
@Raminmousa
@Machine_learn
https://www.tg-me.com/+SP9l58Ta_zZmYmY0
The hitchhikers guide to python

๐Ÿ“– Book

@Machine_learn
2025/02/22 22:03:15
Back to Top
HTML Embed Code: