# Clone repository
git clone https://github.com/01-ai/Yi-Coder.git
cd Yi-Coder
# Install requirements
pip install -r requirements.txt
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍2
Book of machine learning algorithms & concepts explained to simply, even a human can understand.
📓 Book
✅ @Machine_learn
📓 Book
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3
Conformal prediction under ambiguous ground truth
Paper: https://arxiv.org/pdf/2307.09302v2.pdf
Codes:
https://github.com/google-deepmind/uncertain_ground_truth
https://github.com/alaalab/webcp
Dataset: Dermatology ddx dataset
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2307.09302v2.pdf
Codes:
https://github.com/google-deepmind/uncertain_ground_truth
https://github.com/alaalab/webcp
Dataset: Dermatology ddx dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Forwarded from Papers
با عرض سلام
در ادامه فرایند نگارش مقالات سعی داریم چند گروه ۴ نفره برای مقالات با موضوعات مختلف ایجاد کنیم. چهار موضوع که می خواهیم در ان ها کار کنیم از قبیل زیر می باشند:
۱ - طبقه بندی تصاویر پزشکی
۲- پیش بینی ترافیک شبکه
۳- حل مشکلات شبکه های RNN در مساله سری زمانی
۴-پیش بینی بار مصرفی در شبکه های smart grid
جهت اطلاعات بیشتر کسانی که دوست دارند می تونن به بنده پیام
بدن.
✅ @Raminmousa
@Paper4money
@machine_learn
در ادامه فرایند نگارش مقالات سعی داریم چند گروه ۴ نفره برای مقالات با موضوعات مختلف ایجاد کنیم. چهار موضوع که می خواهیم در ان ها کار کنیم از قبیل زیر می باشند:
۱ - طبقه بندی تصاویر پزشکی
۲- پیش بینی ترافیک شبکه
۳- حل مشکلات شبکه های RNN در مساله سری زمانی
۴-پیش بینی بار مصرفی در شبکه های smart grid
جهت اطلاعات بیشتر کسانی که دوست دارند می تونن به بنده پیام
بدن.
@Paper4money
@machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Machine learning books and papers pinned «با عرض سلام در ادامه فرایند نگارش مقالات سعی داریم چند گروه ۴ نفره برای مقالات با موضوعات مختلف ایجاد کنیم. چهار موضوع که می خواهیم در ان ها کار کنیم از قبیل زیر می باشند: ۱ - طبقه بندی تصاویر پزشکی ۲- پیش بینی ترافیک شبکه ۳- حل مشکلات شبکه های RNN در مساله…»
This open-source RAG tool for chatting with your documents is Trending at Number-1 in Github from the past few days
🔍 Open-source RAG UI for document QA
🛠️ Supports local LLMs and API providers
📊 Hybrid RAG pipeline with full-text & vector retrieval
🖼️ Multi-modal QA with figures & tables support
📄 Advanced citations with in-browser PDF preview
🧠 Complex reasoning with question decomposition
⚙️ Configurable settings UI
🔧 Extensible Gradio-based architecture
Key features:
🌐 Host your own RAG web UI with multi-user login
🤖 Organize LLM & embedding models (local & API)
🔎 Hybrid retrieval + re-ranking for quality
📚 Multi-modal parsing and QA across documents
💡 Detailed citations with relevance scores
🧩 Question decomposition for complex queries
🎛️ Adjustable retrieval & generation settings
🔌 Customizable UI and indexing strategies
▪ Github
✅ @Machine_learn
🔍 Open-source RAG UI for document QA
🛠️ Supports local LLMs and API providers
📊 Hybrid RAG pipeline with full-text & vector retrieval
🖼️ Multi-modal QA with figures & tables support
📄 Advanced citations with in-browser PDF preview
🧠 Complex reasoning with question decomposition
⚙️ Configurable settings UI
🔧 Extensible Gradio-based architecture
Key features:
🌐 Host your own RAG web UI with multi-user login
🤖 Organize LLM & embedding models (local & API)
🔎 Hybrid retrieval + re-ranking for quality
📚 Multi-modal parsing and QA across documents
💡 Detailed citations with relevance scores
🧩 Question decomposition for complex queries
🎛️ Adjustable retrieval & generation settings
🔌 Customizable UI and indexing strategies
▪ Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
Data Structures and Information Retrieval in Python
https://greenteapress.com/wp/data-structures-and-information-retrieval-in-python/
✅ @Machine_learn
https://greenteapress.com/wp/data-structures-and-information-retrieval-in-python/
Please open Telegram to view this post
VIEW IN TELEGRAM
WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling
Paper: https://arxiv.org/pdf/2408.16532v1.pdf
Code: https://github.com/jishengpeng/wavtokenizer
Dataset: AudioSet LibriTTS SLURP
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2408.16532v1.pdf
Code: https://github.com/jishengpeng/wavtokenizer
Dataset: AudioSet LibriTTS SLURP
Please open Telegram to view this post
VIEW IN TELEGRAM
Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders
Paper: https://arxiv.org/pdf/2408.15998v1.pdf
Code: https://github.com/nvlabs/eagle
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2408.15998v1.pdf
Code: https://github.com/nvlabs/eagle
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2🔥1
Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming
Paper: https://arxiv.org/pdf/2408.16725v2.pdf
Code: https://github.com/gpt-omni/mini-omni
Dataset: LibriSpeech
✅ @Machine_learn
Paper: https://arxiv.org/pdf/2408.16725v2.pdf
Code: https://github.com/gpt-omni/mini-omni
Dataset: LibriSpeech
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
📃A Comprehensive Survey on Deep Graph Representation Learning
🗓 Publish year: 2024
📘Journal: Neural Networks(I.F=6)
📎 Study paper
✅@Machine_learn
🗓 Publish year: 2024
📘Journal: Neural Networks(I.F=6)
📎 Study paper
✅@Machine_learn
❤3👍1
This article presents an implementation of the UNet 3+ architecture using TensorFlow.
UNet 3+ extends the classic UNet and UNet++ architecture.
This article looks at each block of the UNet 3+ architecture and explains how they work and what helps improve the performance of the model.
Understanding these blocks will help us understand the mechanisms behind UNet 3+ and how it effectively tackles tasks such as image segmentation or other pixel-wise prediction tasks.
https://idiotdeveloper.com/unet-3-plus-implementation-in-tensorflow/
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10👍2