Telegram Web Link
An open source UI to train your own Flux LoRA just landed on Hugging Face 🚀 Also, probably the easiest and cheapest (local training also supported).

https://huggingface.co/spaces/autotrain-projects/train-flux-lora-ease


@Machine_learn
Forwarded from Papers
با عرض سلام مقاله اي تحت ريوايزد داريم که در حوزه Ultrasound Image Segmentation هستش. دوستانی که نیاز دارن نفر سومش رو می تونیم اختصاص بدیم.

@Raminmousa
@Paper4money
@Machine_learn
Reinforcement Learning_ An Introduction, 2nd Edition

Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Artificial Intelligence and Games
(2nd Edition)


📚 Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Data-Intensive Text Processing with MapReduce

📚 Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Yi-Coder

🟢Yi-Coder-9B;
🟢Yi-Coder-9B-Chat;
🟠Yi-Coder-1.5B;
🟠Yi-Coder-1.5B-Chat.


# Clone repository
git clone https://github.com/01-ai/Yi-Coder.git
cd Yi-Coder

# Install requirements
pip install -r requirements.txt




🟡Arxiv
🖥Github


@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Book of machine learning algorithms & concepts explained to simply, even a human can understand.

📓 Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Papers
با عرض سلام
در ادامه فرایند نگارش مقالات سعی داریم چند گروه ۴ نفره برای مقالات با موضوعات مختلف ایجاد کنیم. چهار موضوع که می خواهیم در ان ها کار کنیم از قبیل زیر می باشند:
۱ - طبقه بندی تصاویر پزشکی
۲- پیش بینی ترافیک شبکه
۳- حل مشکلات شبکه های RNN در مساله سری زمانی
۴-پیش بینی بار مصرفی در شبکه های smart grid
جهت اطلاعات بیشتر کسانی که دوست دارند می تونن به بنده پیام
بدن.

@Raminmousa
@Paper4money
@machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Machine learning books and papers pinned «با عرض سلام در ادامه فرایند نگارش مقالات سعی داریم چند گروه ۴ نفره برای مقالات با موضوعات مختلف ایجاد کنیم. چهار موضوع که می خواهیم در ان ها کار کنیم از قبیل زیر می باشند: ۱ - طبقه بندی تصاویر پزشکی ۲- پیش بینی ترافیک شبکه ۳- حل مشکلات شبکه های RNN در مساله…»
Fluent Python

📚 Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
This open-source RAG tool for chatting with your documents is Trending at Number-1 in Github from the past few days

🔍 Open-source RAG UI for document QA
🛠️ Supports local LLMs and API providers
📊 Hybrid RAG pipeline with full-text & vector retrieval
🖼️ Multi-modal QA with figures & tables support
📄 Advanced citations with in-browser PDF preview
🧠 Complex reasoning with question decomposition
⚙️ Configurable settings UI
🔧 Extensible Gradio-based architecture

Key features:

🌐 Host your own RAG web UI with multi-user login
🤖 Organize LLM & embedding models (local & API)
🔎 Hybrid retrieval + re-ranking for quality
📚 Multi-modal parsing and QA across documents
💡 Detailed citations with relevance scores
🧩 Question decomposition for complex queries
🎛️ Adjustable retrieval & generation settings
🔌 Customizable UI and indexing strategies



Github

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling

Paper: https://arxiv.org/pdf/2408.16532v1.pdf

Code: https://github.com/jishengpeng/wavtokenizer

Dataset: AudioSet LibriTTS SLURP

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders

Paper: https://arxiv.org/pdf/2408.15998v1.pdf

Code: https://github.com/nvlabs/eagle

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming

Paper: https://arxiv.org/pdf/2408.16725v2.pdf

Code: https://github.com/gpt-omni/mini-omni

Dataset: LibriSpeech

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
📃A Comprehensive Survey on Deep Graph Representation Learning

🗓 Publish year: 2024
📘Journal: Neural Networks(I.F=6)



📎 Study paper

@Machine_learn
🖥 UNet 3+ Implementation in TensorFlow

This article presents an implementation of the UNet 3+ architecture using TensorFlow.

UNet 3+ extends the classic UNet and UNet++ architecture.

This article looks at each block of the UNet 3+ architecture and explains how they work and what helps improve the performance of the model.

Understanding these blocks will help us understand the mechanisms behind UNet 3+ and how it effectively tackles tasks such as image segmentation or other pixel-wise prediction tasks.

https://idiotdeveloper.com/unet-3-plus-implementation-in-tensorflow/

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Hands-On Large Language Models

Github

@Machine_learn
🖥 An Introduction to Tensors for Students
of Physics and Engineering

Book

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
2024/11/16 05:09:41
Back to Top
HTML Embed Code: