LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments
🖥 Github: https://github.com/bigai-nlco/langsuite
📕 Paper: https://arxiv.org/abs/2406.16294v1
🔥Dataset: https://paperswithcode.com/dataset/ai2-thor
@Machine_learn
🔥Dataset: https://paperswithcode.com/dataset/ai2-thor
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Point-SAM: Promptable 3D Segmentation Model for Point Clouds
🖥 Github: https://github.com/zyc00/point-sam
📕 Paper: https://arxiv.org/abs/2406.17741v1
🔥Dataset: https://paperswithcode.com/dataset/shapenet
@Machine_learn
🔥Dataset: https://paperswithcode.com/dataset/shapenet
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
با عرض سلام پك يادگيري ماشين و يادگيري عميق به همراه ٣٦ پروژه با داكيومنت فارسي رو براي دوستان تهيه كرديم از دوستان كسي خواست مي تونه به ايدي بنده پيام بده.
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
@Raminmousa
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
@Raminmousa
🏥 MedMNIST-C: benchmark dataset based on the MedMNIST+ collection covering 12 2D datasets and 9 imaging modalities.
🖥 Github: https://github.com/francescodisalvo05/medmnistc-api
📕 Paper: https://arxiv.org/abs/2406.17536v2
🔥Dataset: https://paperswithcode.com/dataset/imagenet-c
@Machine_learn
pip install medmnistc
🔥Dataset: https://paperswithcode.com/dataset/imagenet-c
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 SEE-2-SOUND - a method for generating complex spatial sound based on images and videos
— pip install see2sound
🖥 GitHub
🟡 Hugging Face
🟡 Arxiv
@Machine_learn
— pip install see2sound
🖥 GitHub
🟡 Hugging Face
🟡 Arxiv
@Machine_learn
Seq2Seq: Sequence-to-Sequence Generator
🖥 Github: https://github.com/fiy2w/mri_seq2seq
📕 Paper: https://arxiv.org/abs/2407.02911v1
🔥Dataset: https://paperswithcode.com/task/contrastive-learning
@Machine_learn
🖥 Github: https://github.com/fiy2w/mri_seq2seq
📕 Paper: https://arxiv.org/abs/2407.02911v1
🔥Dataset: https://paperswithcode.com/task/contrastive-learning
@Machine_learn
سلام دوستانی که مقاله دارن می تونن به این ژورنال بفرستن و من و به عنوان داور معرفی کنن
@Machine_learn
@Machine_learn
Minutes to Seconds: Speeded-up DDPM-based Image Inpainting with Coarse-to-Fine Sampling
🖥 Github: https://github.com/linghuyuhangyuan/m2s
📕 Paper: https://arxiv.org/abs/2407.05875v1
🔥Dataset: https://paperswithcode.com/task/denoising
@Machine_learn
🔥Dataset: https://paperswithcode.com/task/denoising
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👁🗨 LongVA: Long Context Transfer from Language to Vision
▪Github: https://github.com/EvolvingLMMs-Lab/LongVA
▪Paper: https://arxiv.org/abs/2406.16852
▪Project: https://lmms-lab.github.io/posts/longva/
▪Demo: https://longva-demo.lmms-lab.com/
@Machine_learn
▪Github: https://github.com/EvolvingLMMs-Lab/LongVA
▪Paper: https://arxiv.org/abs/2406.16852
▪Project: https://lmms-lab.github.io/posts/longva/
▪Demo: https://longva-demo.lmms-lab.com/
@Machine_learn
Unified Embedding Alignment for Open-Vocabulary Video Instance Segmentation (ECCV 2024)
🖥 Github: https://github.com/fanghaook/ovformer
📕 Paper: https://arxiv.org/abs/2407.07427v1
@Machine_learn
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Multimodal contrastive learning for spatial gene expression prediction using histology images
🖥 Github: https://github.com/modelscope/data-juicer
📕 Paper: https://arxiv.org/abs/2407.08583v1
🚀 Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
🚀 Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 An Empirical Study of Mamba-based Pedestrian Attribute Recognition
🖥 Github: https://github.com/event-ahu/openpar
📕 Paper: https://arxiv.org/pdf/2407.10374v1.pdf
🚀 Dataset: https://paperswithcode.com/dataset/peta
@Machine_learn
🚀 Dataset: https://paperswithcode.com/dataset/peta
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Aligning Sight and Sound: Advanced Sound Source Localization Through Audio-Visual Alignment
🖥 Github: https://github.com/kaistmm/SSLalignment
📕 Paper: https://arxiv.org/abs/2407.13676v1
🚀 Dataset: https://paperswithcode.com/dataset/is3-interactive-synthetic-sound-source
@Machine_learn
🚀 Dataset: https://paperswithcode.com/dataset/is3-interactive-synthetic-sound-source
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 MG-LLaVA - multimodal LLM with advanced capabilities for working with visual information
Just recently, the guys from Shanghai University rolled out MG-LLaVA - MLLM, which expands the capabilities of processing visual information through the use of additional components: special components that are responsible for working with low and high resolution.
MG-LLaVA integrates an additional high-resolution visual encoder to capture fine details, which are then combined with underlying visual features using the Conv-Gate network.
Trained exclusively on publicly available multimodal data, MG-LLaVA achieves excellent results.
🟡 MG-LLaVA page
🖥 GitHub
@Machine_learn
Just recently, the guys from Shanghai University rolled out MG-LLaVA - MLLM, which expands the capabilities of processing visual information through the use of additional components: special components that are responsible for working with low and high resolution.
MG-LLaVA integrates an additional high-resolution visual encoder to capture fine details, which are then combined with underlying visual features using the Conv-Gate network.
Trained exclusively on publicly available multimodal data, MG-LLaVA achieves excellent results.
🟡 MG-LLaVA page
🖥 GitHub
@Machine_learn
Aligning Sight and Sound: Advanced Sound Source Localization Through Audio-Visual Alignment
🖥 Github: https://github.com/kaistmm/SSLalignment
📕 Paper: https://arxiv.org/abs/2407.13676v1
🚀 Dataset: https://paperswithcode.com/dataset/is3-interactive-synthetic-sound-source
@Machine_learn
🖥 Github: https://github.com/kaistmm/SSLalignment
📕 Paper: https://arxiv.org/abs/2407.13676v1
🚀 Dataset: https://paperswithcode.com/dataset/is3-interactive-synthetic-sound-source
@Machine_learn
🚀 Dataset: https://paperswithcode.com/dataset/behave
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM