Telegram Web Link
🌐 𝗠𝗮𝗷𝗼𝗿 𝗧𝗢𝗠: 𝗣𝗹𝗮𝗻𝗲𝘁 𝗘𝗮𝗿𝘁𝗵 𝗶𝘀 𝗯̶𝗹̶𝘂̶𝗲̶ 𝟱.𝟰𝟬𝟱 𝗚𝗛𝘇

MajorTom-Core-S1RTC is a new satellite image standard and dataset that contains 1,469,955 images.

16 TB of radiometrically calibrated images.

HF: https://huggingface.co/Major-TOM
Github: https://github.com/ESA-PhiLab/Major-TOM/
Colab: https://colab.research.google.com/github/ESA-PhiLab/Major-TOM/blob/main/03-Filtering-in-Colab.ipynb
Paper: https://www.arxiv.org/abs/2402.12095
MajorTOM-Core-Viewer: https://huggingface.co/spaces/Major-TOM/MajorTOM-Core-Viewer

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
با عرض سلام پك يادگيري ماشين و يادگيري عميق به همراه ٣٦ پروژه با داكيومنت فارسي رو براي دوستان تهيه كرديم از دوستان كسي خواست مي تونه به ايدي بنده پيام بده.

1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray

@Raminmousa
👍11🔥21
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments

🖥 Github: https://github.com/bigai-nlco/langsuite

📕 Paper: https://arxiv.org/abs/2406.16294v1

🔥Dataset: https://paperswithcode.com/dataset/ai2-thor

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51
Point-SAM: Promptable 3D Segmentation Model for Point Clouds

🖥 Github: https://github.com/zyc00/point-sam

📕 Paper: https://arxiv.org/abs/2406.17741v1

🔥Dataset: https://paperswithcode.com/dataset/shapenet

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
2
با عرض سلام پك يادگيري ماشين و يادگيري عميق به همراه ٣٦ پروژه با داكيومنت فارسي رو براي دوستان تهيه كرديم از دوستان كسي خواست مي تونه به ايدي بنده پيام بده.

1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray

@Raminmousa
2👍1
🏥 MedMNIST-C: benchmark dataset based on the MedMNIST+ collection covering 12 2D datasets and 9 imaging modalities.

pip install medmnistc

🖥 Github: https://github.com/francescodisalvo05/medmnistc-api

📕 Paper: https://arxiv.org/abs/2406.17536v2

🔥Dataset: https://paperswithcode.com/dataset/imagenet-c

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
2🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 SEE-2-SOUND - a method for generating complex spatial sound based on images and videos

— pip install see2sound

🖥 GitHub
🟡 Hugging Face
🟡 Arxiv

@Machine_learn
🔥5
سلام دوستانی که مقاله دارن می تونن به این ژورنال بفرستن و من و به عنوان داور معرفی کنن
@Machine_learn
👍83🔥1
Minutes to Seconds: Speeded-up DDPM-based Image Inpainting with Coarse-to-Fine Sampling

🖥 Github: https://github.com/linghuyuhangyuan/m2s

📕 Paper: https://arxiv.org/abs/2407.05875v1

🔥Dataset: https://paperswithcode.com/task/denoising

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥21
Unified Embedding Alignment for Open-Vocabulary Video Instance Segmentation (ECCV 2024)

🖥 Github: https://github.com/fanghaook/ovformer

📕 Paper: https://arxiv.org/abs/2407.07427v1

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
Multimodal contrastive learning for spatial gene expression prediction using histology images

🖥 Github: https://github.com/modelscope/data-juicer

📕 Paper: https://arxiv.org/abs/2407.08583v1

🚀 Dataset: https://paperswithcode.com/dataset/coco

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥2
🌟 An Empirical Study of Mamba-based Pedestrian Attribute Recognition

🖥 Github: https://github.com/event-ahu/openpar

📕 Paper: https://arxiv.org/pdf/2407.10374v1.pdf

🚀 Dataset: https://paperswithcode.com/dataset/peta

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/07/08 13:12:10
Back to Top
HTML Embed Code: